Regulation of the tyrosine phosphorylation of Phospholipid Scramblase 1 in mast cells that are stimulated through the high-affinity IgE receptor. Kassas, A; Moura, IC; Yamashita, Y; Scheffel, J; Guérin-Marchand, C; Blank, U; Sims, PJ; Wiedmer, T; Monteiro, RC; Rivera, J; Charles, N; Benhamou, M PloS one
9
e109800
2014
Abstract anzeigen
Engagement of high-affinity immunoglobulin E receptors (FcεRI) activates two signaling pathways in mast cells. The Lyn pathway leads to recruitment of Syk and to calcium mobilization whereas the Fyn pathway leads to phosphatidylinositol 3-kinase recruitment. Mapping the connections between both pathways remains an important task to be completed. We previously reported that Phospholipid Scramblase 1 (PLSCR1) is phosphorylated on tyrosine after cross-linking FcεRI on RBL-2H3 rat mast cells, amplifies mast cell degranulation, and is associated with both Lyn and Syk tyrosine kinases. Here, analysis of the pathway leading to PLSCR1 tyrosine phosphorylation reveals that it depends on the FcRγ chain. FcεRI aggregation in Fyn-deficient mouse bone marrow-derived mast cells (BMMC) induced a more robust increase in FcεRI-dependent tyrosine phosphorylation of PLSCR1 compared to wild-type cells, whereas PLSCR1 phosphorylation was abolished in Lyn-deficient BMMC. Lyn association with PLSCR1 was not altered in Fyn-deficient BMMC. PLSCR1 phosphorylation was also dependent on the kinase Syk and significantly, but partially, dependent on detectable calcium mobilization. Thus, the Lyn/Syk/calcium axis promotes PLSCR1 phosphorylation in multiple ways. Conversely, the Fyn-dependent pathway negatively regulates it. This study reveals a complex regulation for PLSCR1 tyrosine phosphorylation in FcεRI-activated mast cells and that PLSCR1 sits at a crossroads between Lyn and Fyn pathways. | 25289695
|
Nuclear phospholipid scramblase 1 prolongs the mitotic expansion of granulocyte precursors during G-CSF-induced granulopoiesis. Chen, CW; Sowden, M; Zhao, Q; Wiedmer, T; Sims, PJ Journal of leukocyte biology
90
221-33
2010
Abstract anzeigen
PLSCR1-/- mice exhibit normal, steady-state hematologic parameters but impaired emergency granulopoiesis upon in vivo administration of G-CSF. The mechanism by which PLSCR1 contributes to G-CSF-induced neutrophil production is largely unknown. We now report that the expansion of bone marrow myelocytes upon in vivo G-CSF treatment is reduced in PLSCR1-/- mice relative to WT. Using SCF-ER-Hoxb8-immortalized myeloid progenitors to examine the progression of G-CSF-driven granulocytic differentiation in vitro, we found that PLSCR1 prolongs the period of mitotic expansion of proliferative granulocyte precursors, thereby giving rise to increased neutrophil production from their progenitors. This effect of PLSCR1 is blocked by a ΔNLS-PLSCR1, which prevents its nuclear import. By contrast, mutation that prevents the membrane association of PLSCR1 has minimal impact on the role of PLSCR1 in G-CSF-induced granulopoiesis. These data imply that the capacity of PLSCR1 to augment G-CSF-dependent production of mature neutrophils from myeloid progenitors is unrelated to its reported activities at the endofacial surface of the plasma membrane but does require entry of the protein into the nucleus, suggesting that this response is mediated through the observed effects of PLSCR1 on gene transcription. | 21447647
|
Adiposity, dyslipidemia, and insulin resistance in mice with targeted deletion of phospholipid scramblase 3 (PLSCR3). Wiedmer, T; Zhao, J; Li, L; Zhou, Q; Hevener, A; Olefsky, JM; Curtiss, LK; Sims, PJ Proceedings of the National Academy of Sciences of the United States of America
101
13296-301
2004
Abstract anzeigen
The phospholipid scramblases (PLSCR1 to PLSCR4) are a structurally and functionally unique class of proteins, which are products of a tetrad of genes conserved from Caenorhabditis elegans to humans. The best characterized member of this family, PLSCR1, is implicated in the remodeling of the transbilayer distribution of plasma membrane phospholipids but is also required for normal signaling through select growth factor receptors. Mice with targeted deletion of PLSCR1 display perinatal granulocytopenia due to defective response of hematopoietic precursors to granulocyte colony-stimulating factor and stem cell factor. To gain insight into the biologic function of another member of the PLSCR family, we investigated mice with targeted deletion of PLSCR3, a protein that like PLSCR1 is expressed in many blood cells but which, by contrast to PLSCR1, is also highly expressed in fat and muscle. PLSCR3(-/-) mice at 2 months of age displayed aberrant accumulation of abdominal fat when maintained on standard rodent chow, which was accompanied by insulin resistance, glucose intolerance, and dyslipidemia. Primary adipocytes and cultured bone-marrow-derived macrophages from PLSCR3(-/-) mice were engorged with neutral lipid, and adipocytes displayed defective responses to exogenous insulin. Plasma of PLSCR3(-/-) mice was elevated in non-high-density lipoproteins, cholesterol, triglycerides, nonesterified fatty acids, and leptin, whereas adiponectin was low. These data suggest that the expression of PLSCR3 may be required for normal adipocyte and/or macrophage maturation or function and raise the possibility that deletions or mutations affecting the PLSCR3(-/-) gene locus may contribute to the risk for lipid-related disorders in humans. | 15328404
|