Wenn Sie das Fenster schließen, wird Ihre Konfiguration nicht gespeichert, es sei denn, Sie haben Ihren Artikel in die Bestellung aufgenommen oder zu Ihren Favoriten hinzugefügt.
Klicken Sie auf OK, um das MILLIPLEX® MAP-Tool zu schließen oder auf Abbrechen, um zu Ihrer Auswahl zurückzukehren.
Wählen Sie konfigurierbare Panels & Premixed-Kits - ODER - Kits für die zelluläre Signaltransduktion & MAPmates™
Konfigurieren Sie Ihre MILLIPLEX® MAP-Kits und lassen sich den Preis anzeigen.
Konfigurierbare Panels & Premixed-Kits
Unser breites Angebot enthält Multiplex-Panels, für die Sie die Analyten auswählen können, die am besten für Ihre Anwendung geeignet sind. Unter einem separaten Register können Sie das Premixed-Cytokin-Format oder ein Singleplex-Kit wählen.
Kits für die zelluläre Signaltransduktion & MAPmates™
Wählen Sie gebrauchsfertige Kits zur Erforschung gesamter Signalwege oder Prozesse. Oder konfigurieren Sie Ihre eigenen Kits mit Singleplex MAPmates™.
Die folgenden MAPmates™ sollten nicht zusammen analysiert werden: -MAPmates™, die einen unterschiedlichen Assaypuffer erfordern. -Phosphospezifische und MAPmate™ Gesamtkombinationen wie Gesamt-GSK3β und Gesamt-GSK3β (Ser 9). -PanTyr und locusspezifische MAPmates™, z.B. Phospho-EGF-Rezeptor und Phospho-STAT1 (Tyr701). -Mehr als 1 Phospho-MAPmate™ für ein einziges Target (Akt, STAT3). -GAPDH und β-Tubulin können nicht mit Kits oder MAPmates™, die panTyr enthalten, analysiert werden.
.
Bestellnummer
Bestellinformationen
St./Pkg.
Liste
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Wählen Sie bitte Spezies, Panelart, Kit oder Probenart
Um Ihr MILLIPLEX® MAP-Kit zu konfigurieren, wählen Sie zunächst eine Spezies, eine Panelart und/oder ein Kit.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Spezies
Panelart
Gewähltes Kit
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
96-Well Plate
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
Weitere Reagenzien hinzufügen (MAPmates erfordern die Verwendung eines Puffer- und Detektionskits)
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Platzsparende Option Kunden, die mehrere Kits kaufen, können ihre Multiplex-Assaykomponenten in Kunststoffbeuteln anstelle von Packungen erhalten, um eine kompaktere Lagerung zu ermöglichen.
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Das Produkt wurde in Ihre Bestellung aufgenommen
Sie können nun ein weiteres Kit konfigurieren, ein Premixed-Kit wählen, zur Kasse gehen oder das Bestell-Tool schließen.
Anti-NMDAR2B phospho Tyr1252 Antibody is an antibody against NMDAR2B phospho Tyr1252 for use in WB.
More>>Anti-NMDAR2B phospho Tyr1252 Antibody is an antibody against NMDAR2B phospho Tyr1252 for use in WB. Less<<
Anti-NMDAR2B phospho Tyr1252 Antibody: SDB (Sicherheitsdatenblätter), Analysenzertifikate und Qualitätszertifikate, Dossiers, Broschüren und andere verfügbare Dokumente.
Anti-NMDAR2B phospho Tyr1252 Antibody is an antibody against NMDAR2B phospho Tyr1252 for use in WB.
Key Applications
Western Blotting
Application Notes
Western blot: 1:1,000
Optimal working dilutions must be determined by the end user.
Biological Information
Immunogen
Synthetic peptide of amino acids surrounding the phosphoTyrosine 1252 site of rat NMDAR2B.
Host
Rabbit
Specificity
NMDAR2B, phosphoTyrosine1252. The antibody recognizes a protein of ~180 kDa corresponding to NMDAR2B, phosphoTyrosine1252 in lysates from rat brain hippocampus. Immunolabeling is blocked by the phosphopeptide used as the immunogen but not the corresponding non-phosphopeptide. Immunolabeling is also blocked by Lamda-phosphatase treatment.
Species Reactivity
Rat
Species Reactivity Note
The immunogen has 100% homology with human and non-human primates.
N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain.
FUNCTION: SwissProt: Q13224 # NMDA receptor subtype of glutamate-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Mediated by glycine. SIZE: 1484 amino acids; 166367 Da SUBUNIT: Forms heteromeric channel of a zeta subunit (GRIN1), a epsilon subunit (GRIN2A, GRIN2B, GRIN2C or GRIN2D) and a third subunit (GRIN3A or GRIN3B). Found in a complex with GRIN1 and GRIN3B. Found in a complex with GRIN1, GRIN3A and PPP2CB. Interacts with PDZ domains of INADL and DLG4 (By similarity). SUBCELLULAR LOCATION: Membrane; Multi-pass membrane protein. TISSUE SPECIFICITY: Primarily found in the fronto-parieto-temporal cortex and hippocampus pyramidal cells, lower expression in the basal ganglia. SIMILARITY: SwissProt: Q13224 ## Belongs to the glutamate-gated ion channel (TC 1.A.10) family.
Physicochemical Information
Dimensions
Materials Information
Toxicological Information
Safety Information according to GHS
Safety Information
Product Usage Statements
Usage Statement
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
Storage and Shipping Information
Storage Conditions
Maintain at -20°C in undiluted for up to 6 months after date of receipt. Avoid repeated freeze/thaw cycles. Do not store in a self defrosting freezer.
The NMDA receptor (NMDAR) plays a central role in the function of excitatory synapses. Recent studies have provided interesting insights into several aspects of the trafficking of this receptor in neurons. The NMDAR is not a static resident of the synapse. Rather, the number and composition of synaptic NMDARs can be modulated by several factors. The interaction of PDZ proteins, generally thought to occur at the synapse, appears to occur early in the secretory pathway; this interaction may play a role in the assembly of the receptor complex and its exit from the endoplasmic reticulum. This review addresses recent advances in our understanding of NMDAR trafficking and its synaptic delivery and maintenance.
In the CA1 region of the rat hippocampus, long-term potentiation (LTP) requires the activation of NMDA receptors (NMDARs) and leads to an enhancement of AMPA receptor (AMPAR) function. In neonatal hippocampus, this increase in synaptic strength seems to be mediated by delivery of AMPARs to the synapse. Here we studied changes in surface expression of native AMPA and NMDA receptors following induction of LTP in the adult rat brain. In contrast to early postnatal rats, we find that LTP in the adult rat does not alter membrane association of AMPARs. Instead, LTP leads to rapid surface expression of NMDARs in a PKC- and Src-family-dependent manner. The present study suggests a developmental shift in the LTP-dependent trafficking of AMPA receptors. Moreover, our results indicate that insertion of NMDA receptors may be a key step in regulating synaptic plasticity.
NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Carroll, Reed C and Zukin, R Suzanne Trends Neurosci., 25: 571-7 (2002)
2002
Dynamic regulation of synaptic efficacy is thought to play a crucial role in formation of neuronal connections and in experience-dependent modification of neural circuitry. The molecular and cellular mechanisms by which synaptic changes are triggered and expressed are the focus of intense interest. This articles reviews recent evidence that NMDA receptors undergo dynamically regulated targeting and trafficking, and that the physical transport of NMDA receptors in and out of the synaptic membrane contributes to several forms of long-lasting synaptic plasticity. The identification of targeting and internalization sequences in NMDA-receptor subunits has begun the unraveling of some mechanisms that underlie activity-dependent redistribution of NMDA receptors. Given that NMDA receptors are widely expressed throughout the CNS, regulation of NMDA-receptor trafficking provides a potentially important way to modulate efficacy of synaptic transmission.
cDNA clones for four different N-methyl-D-aspartate (NMDA) receptor subunits (NMDAR2A-NMDAR2D) were isolated through polymerase chain reactions followed by molecular screening of a rat brain cDNA library. These subunits are only about 15% identical with the key subunit of the NMDA receptor (NMDAR1) but are highly homologous (approximately 50% homology) with one another. They also commonly possess large hydrophilic domains at both amino- and carboxyl-terminal sides of the four putative transmembrane segments. NMDAR2A and NMDAR2C expressed individually in Xenopus oocytes showed no electrophysiological response to agonists. However, these subunits in combined expression with NMDAR1 markedly potentiated the NMDAR1 activity and produced functional variability in the affinity of agonists, the effectiveness of antagonists, and the sensitivity to Mg2+ blockade. Thus, NMDAR1 is essential for the function of the NMDA receptor, and multiple NMDAR2 subunits potentiate and differentiate the function of the NMDA receptor by forming different heteromeric configurations with NMDAR1. Northern blotting and in situ hybridization analyses revealed that the expressions of individual mRNAs for the NMDAR2 subunits overlap in some brain regions but are also specialized in many other regions. This investigation demonstrates the anatomical and functional differences of the NMDAR2 subunits, which provide the molecular basis for the functional diversity of the NMDA receptor.