Comprehensive immunohistochemical study of mesothelin (MSLN) using different monoclonal antibodies 5B2 and MN-1 in 1562 tumors with evaluation of its prognostic value in malignant pleural mesothelioma. Inaguma, S; Wang, Z; Lasota, J; Onda, M; Czapiewski, P; Langfort, R; Rys, J; Szpor, J; Waloszczyk, P; Okoń, K; Biernat, W; Ikeda, H; Schrump, DS; Hassan, R; Pastan, I; Miettinen, M Oncotarget
8
26744-26754
2016
Abstract anzeigen
Mesothelin (MSLN) is a glycophosphatidylinositol (GPI)-linked cell surface protein highly expressed in several types of malignant tumors sometimes in association with increased tumor aggressiveness and poor clinical outcome. In the present study, 1562 tumors were immunohistochemically analyzed for mesothelin expression using two different types of mouse monoclonal antibodies (5B2 and MN-1) to determine the clinical usefulness of mesothelin immunohistochemistry as well as to pinpoint potential targets for future anti-mesothelin therapy. Also, characterization of selected mesothelin-positive tumors was performed by immunohistochemistry and oncogene sequencing. Among the tumors analyzed, the highest frequencies of mesothelin-positivity were detected in ovarian serous carcinoma (90% in 5B2 and 94% in MN-1). Both antibodies showed frequent positivity in pancreatic adenocarcinoma (71% using 5B2 and 87% using MN-1) and malignant pleural mesothelioma (75% using 5B2 and 78% using MN-1). In malignant mesothelioma, overall survival was significantly longer in the cohort of patients with diffuse membranous expression of mesothelin (P < 0.001). Both antibodies showed positive staining in thymic carcinoma (77% in 5B2 and 59% in MN-1), however, no expression was detected in thymoma. No correlation was detected between mesothelin expression and mismatch repair system deficient phenotype or gene mutation (BRAF and RAS) status in gastrointestinal adenocarcinomas. Mesothelin immunohistochemistry may assist the differential diagnosis of thymoma vs. thymic carcinoma as well as prognostication of mesothelioma patients. Our results demonstrate that patients with solid tumors expressing mesothelin could be targeted by anti-mesothelin therapies. | 28460459
|
New monoclonal antibodies to mesothelin useful for immunohistochemistry, fluorescence-activated cell sorting, Western blotting, and ELISA. Onda, M; Willingham, M; Nagata, S; Bera, TK; Beers, R; Ho, M; Hassan, R; Kreitman, RJ; Pastan, I Clin Cancer Res
11
5840-6
2004
Abstract anzeigen
Mesothelin is a cell surface protein that is highly expressed in some malignant tumors, and is a promising target for immunotherapy. Recent data suggests that mesothelin is an adhesive protein and may have a role in the metastases of ovarian cancer. Although a few monoclonal antibodies (MAb) to mesothelin have been produced, they have limitations for the study of expression of native mesothelin because of their low affinity or reactivity only with denatured mesothelin protein. We have produced novel MAbs to mesothelin to help study mesothelin function and to develop improved diagnosis and immunotherapy of mesothelin-expressing tumors.Mesothelin-deficient mice were immunized with plasmid cDNA encoding mesothelin, and boosted with a mesothelin-rabbit IgG Fc fusion protein prior to cell fusion. Hybridomas were screened by an ELISA using plates coated with mesothelin-Fc protein.Seventeen hybridomas producing anti-mesothelin antibodies were established and shown to react with two epitopes on mesothelin. One group reacts with the same epitope as the low affinity antibody K1 that was originally used to identify mesothelin. The other is a new group that reacts with a new epitope. One antibody from each group was chosen for further study and shown to react strongly on ELISA, on immunohistochemistry, and by fluorescence-activated cell sorting on living cells.Our two newly established MAbs, MN and MB, have different and useful properties compared with current antibodies used for the detection of mesothelin by immunohistochemistry, fluorescence-activated cell sorting, ELISA, and Western blotting. | 16115924
|