LSD1 overexpression is associated with poor prognosis in basal-like breast cancer, and sensitivity to PARP inhibition. Nagasawa, S; Sedukhina, AS; Nakagawa, Y; Maeda, I; Kubota, M; Ohnuma, S; Tsugawa, K; Ohta, T; Roche-Molina, M; Bernal, JA; Narváez, AJ; Jeyasekharan, AD; Sato, K PloS one
10
e0118002
2015
Abstract anzeigen
LSD1, a lysine-specific histone demethylase, is overexpressed in several types of cancers and linked to poor outcomes. In breast cancer, the significance of LSD1 overexpression is not clear. We have performed an in silico analysis to assess the relationship of LSD1 expression to clinical outcome. We demonstrate that LSD1 overexpression is a poor prognostic factor in breast cancer, especially in basal-like breast cancer, a subtype of breast cancer with aggressive clinical features. This link is also observed in samples of triple negative breast cancer. Interestingly, we note that overexpression of LSD1 correlates with down-regulation of BRCA1 in triple negative breast cancer. This phenomenon is also observed in in vitro models of basal-like breast cancer, and is associated with an increased sensitivity to PARP inhibitors. We propose therefore that high expression levels of the demethylase LSD1 is a potential prognostic factor of poor outcome in basal-like breast cancer, and that PARP inhibition may be a therapeutic strategy of interest in this poor prognostic subtype with overexpression of LSD1. | Immunohistochemistry | | 25679396
|
A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage. van Sluis, M; McStay, B Genes & development
29
1151-63
2015
Abstract anzeigen
DNA double-strand breaks (DSBs) are repaired by two main pathways: nonhomologous end-joining and homologous recombination (HR). Repair pathway choice is thought to be determined by cell cycle timing and chromatin context. Nucleoli, prominent nuclear subdomains and sites of ribosome biogenesis, form around nucleolar organizer regions (NORs) that contain rDNA arrays located on human acrocentric chromosome p-arms. Actively transcribed rDNA repeats are positioned within the interior of the nucleolus, whereas sequences proximal and distal to NORs are packaged as heterochromatin located at the nucleolar periphery. NORs provide an opportunity to investigate the DSB response at highly transcribed, repetitive, and essential loci. Targeted introduction of DSBs into rDNA, but not abutting sequences, results in ATM-dependent inhibition of their transcription by RNA polymerase I. This is coupled with movement of rDNA from the nucleolar interior to anchoring points at the periphery. Reorganization renders rDNA accessible to repair factors normally excluded from nucleoli. Importantly, DSBs within rDNA recruit the HR machinery throughout the cell cycle. Additionally, unscheduled DNA synthesis, consistent with HR at damaged NORs, can be observed in G1 cells. These results suggest that HR can be templated in cis and suggest a role for chromosomal context in the maintenance of NOR genomic stability. | | | 26019174
|
BRCA1 pathway function in basal-like breast cancer cells. Hill, SJ; Clark, AP; Silver, DP; Livingston, DM Molecular and cellular biology
34
3828-42
2014
Abstract anzeigen
Sporadic basal-like cancers (BLCs) are a common subtype of breast cancer that share multiple biological properties with BRCA1-mutated breast tumors. Despite being BRCA1(+/+), sporadic BLCs are widely viewed as phenocopies of BRCA1-mutated breast cancers, because they are hypothesized to manifest a BRCA1 functional defect or breakdown of a pathway(s) in which BRCA1 plays a major role. The role of BRCA1 in the repair of double-strand DNA breaks by homologous recombination (HR) is its best understood function and the function most often implicated in BRCA1 breast cancer suppression. Therefore, it is suspected that sporadic BLCs exhibit a defect in HR. To test this hypothesis, multiple DNA damage repair assays focused on several types of repair were performed on a group of cell lines classified as sporadic BLCs and on controls. The sporadic BLC cell lines failed to exhibit an overt HR defect. Rather, they exhibited defects in the repair of stalled replication forks, another BRCA1 function. These results provide insight into why clinical trials of poly(ADP-ribose) polymerase (PARP) inhibitors, which require an HR defect for efficacy, have been unsuccessful in sporadic BLCs, unlike cisplatin, which elicits DNA damage that requires stalled fork repair and has shown efficacy in sporadic BLCs. | | | 25092866
|
Elevated estrogen receptor-α in VHL-deficient condition induces microtubule organizing center amplification via disruption of BRCA1/Rad51 interaction. Jung, YS; Chun, HY; Yoon, MH; Park, BJ Neoplasia (New York, N.Y.)
16
1070-81
2014
Abstract anzeigen
Since loss of VHL is frequently detected early phase genetic event in human renal cell carcinoma, pVHL is assumed to be indispensable for suppression of tumor initiation step. However, induction of HIF-1α, target of pVHL E3 ligase, is more adequate to angiogenesis step after tumor mass formation. Concerning this, it has been reported that pVHL is involved in centrosome location during metaphase and regulates ER-α signaling. Here, we provide the evidences that pVHL-mediated ER-α suppression is critical for microtubule organizing center (MTOC) maintaining and elevated ER-α promotes MTOC amplification through disruption of BRCA1-Rad51 interaction. In fact, numerous MTOC in VHL- or BRCA1-deficient cells are reduced by Fulvestrant, inhibitor of ER-α expression as well as antagonist. In addition, we reveal that activation of ER signaling can increase γ-tubulin, core factor of TuRC and render the resistance to Taxol. Thus, Fulvestrant but not Tamoxifen, antagonist against ER-α, can restore the Taxol sensitivity in VHL- or BRCA1-deficient cells. Our results suggest that pVHL-mediated ER-α suppression is important for regulation of MTOC as well as drug resistance. | Immunoblotting (Western) | | 25499220
|
53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Fradet-Turcotte, A; Canny, MD; Escribano-Díaz, C; Orthwein, A; Leung, CC; Huang, H; Landry, MC; Kitevski-LeBlanc, J; Noordermeer, SM; Sicheri, F; Durocher, D Nature
499
50-4
2013
Abstract anzeigen
53BP1 (also called TP53BP1) is a chromatin-associated factor that promotes immunoglobulin class switching and DNA double-strand-break (DSB) repair by non-homologous end joining. To accomplish its function in DNA repair, 53BP1 accumulates at DSB sites downstream of the RNF168 ubiquitin ligase. How ubiquitin recruits 53BP1 to break sites remains unknown as its relocalization involves recognition of histone H4 Lys 20 (H4K20) methylation by its Tudor domain. Here we elucidate how vertebrate 53BP1 is recruited to the chromatin that flanks DSB sites. We show that 53BP1 recognizes mononucleosomes containing dimethylated H4K20 (H4K20me2) and H2A ubiquitinated on Lys 15 (H2AK15ub), the latter being a product of RNF168 action on chromatin. 53BP1 binds to nucleosomes minimally as a dimer using its previously characterized methyl-lysine-binding Tudor domain and a carboxy-terminal extension, termed the ubiquitination-dependent recruitment (UDR) motif, which interacts with the epitope formed by H2AK15ub and its surrounding residues on the H2A tail. 53BP1 is therefore a bivalent histone modification reader that recognizes a histone 'code' produced by DSB signalling. | | | 23760478
|
BAL1 and its partner E3 ligase, BBAP, link Poly(ADP-ribose) activation, ubiquitylation, and double-strand DNA repair independent of ATM, MDC1, and RNF8. Yan, Q; Xu, R; Zhu, L; Cheng, X; Wang, Z; Manis, J; Shipp, MA Molecular and cellular biology
33
845-57
2013
Abstract anzeigen
The BAL1 macrodomain-containing protein and its partner E3 ligase, BBAP, are overexpressed in chemotherapy-resistant lymphomas. BBAP selectively ubiquitylates histone H4 and indirectly promotes early 53BP1 recruitment to DNA damage sites. However, neither BBAP nor BAL1 has been directly associated with a DNA damage response (DDR), and the function of BAL1 remains undefined. Herein, we describe a direct link between rapid and short-lived poly(ADP-ribose) (PAR) polymerase 1 (PARP1) activation and PARylation at DNA damage sites, PAR-dependent recruitment of the BAL1 macrodomain-containing protein and its partner E3 ligase, local BBAP-mediated ubiquitylation, and subsequent recruitment of the checkpoint mediators 53BP1 and BRCA1. The PARP1-dependent localization of BAL1-BBAP functionally limits both early and delayed DNA damage and enhances cellular viability independent of ATM, MDC1, and RNF8. These data establish that BAL1 and BBAP are bona fide members of a DNA damage response pathway and are directly associated with PARP1 activation, BRCA1 recruitment, and double-strand break repair. | Immunofluorescence | | 23230272
|
Requirement of heterogeneous nuclear ribonucleoprotein C for BRCA gene expression and homologous recombination. Anantha, RW; Alcivar, AL; Ma, J; Cai, H; Simhadri, S; Ule, J; König, J; Xia, B PloS one
8
e61368
2013
Abstract anzeigen
Heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNP C) is a core component of 40S ribonucleoprotein particles that bind pre-mRNAs and influence their processing, stability and export. Breast cancer tumor suppressors BRCA1, BRCA2 and PALB2 form a complex and play key roles in homologous recombination (HR), DNA double strand break (DSB) repair and cell cycle regulation following DNA damage.PALB2 nucleoprotein complexes were isolated using tandem affinity purification from nuclease-solubilized nuclear fraction. Immunofluorescence was used for localization studies of proteins. siRNA-mediated gene silencing and flow cytometry were used for studying DNA repair efficiency and cell cycle distribution/checkpoints. The effect of hnRNP C on mRNA abundance was assayed using quantitative reverse transcriptase PCR.We identified hnRNP C as a component of a nucleoprotein complex containing breast cancer suppressor proteins PALB2, BRCA2 and BRCA1. Notably, other components of the 40S ribonucleoprotein particle were not present in the complex. hnRNP C was found to undergo significant changes of sub-nuclear localization after ionizing radiation (IR) and to partially localize to DNA damage sites. Depletion of hnRNP C substantially altered the normal balance of repair mechanisms following DSB induction, reducing HR usage in particular, and impaired S phase progression after IR. Moreover, loss of hnRNP C strongly reduced the abundance of key HR proteins BRCA1, BRCA2, RAD51 and BRIP1, which can be attributed, at least in part, to the downregulation of their mRNAs due to aberrant splicing. Our results establish hnRNP C as a key regulator of BRCA gene expression and HR-based DNA repair. They also suggest the existence of an RNA regulatory program at sites of DNA damage, which involves a unique function of hnRNP C that is independent of the 40S ribonucleoprotein particles and most other hnRNP proteins. | | | 23585894
|
The chromatin remodeling protein BRG1 modulates BRCA1 response to UV irradiation by regulating ATR/ATM activation. Zhang, L; Chen, H; Gong, M; Gong, F Frontiers in oncology
3
7
2013
Abstract anzeigen
The SWI/SNF chromatin remodeling complex plays a role in the repair of UV-induced DNA damage. It was proposed that chromatin remodeling activities are utilized to increase the accessibility of nucleotide excision repair (NER) machinery and checkpoint factors to the damaged DNA. It was shown recently that BRCA1 contributes to UV damage response by promoting photoproduct excision, triggering post-UV checkpoint activation and post-replicative repair. In this study, we show that BRCA1 rapidly binds to UV damage sites when cells are undergoing DNA synthesis. In contrast, two phosphorylated forms of BRCA1 do not accumulate at sites of UV damage. Depletion of BRG1, a core subunit of the human SWI/SNF-BAF complex, impairs the recruitment of BRCA1 to the damage sites and attenuates DNA damage induced BRCA1 phosphorylation. At UV lesions-stalled replication forks, BRG1 promotes RPA phosphorylation in response to UV irradiation, since UV-induced phosphorylation of chromatin bound RPA drops significantly when BRG1 is depleted in human cells. Importantly, activation of the ATM/ATR kinases is attenuated when BRG1 is depleted. We propose that BRG1 modulates BRCA1 response to UV irradiation by regulating ATM/ATR activation. | | | 23346553
|
Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Tang, Jiangbo, et al. Nat. Struct. Mol. Biol., 20: 317-25 (2013)
2013
Abstract anzeigen
The pathogenic sequelae of BRCA1 mutation in human and mouse cells are mitigated by concomitant deletion of 53BP1, which binds histone H4 dimethylated at Lys20 (H4K20me2) to promote nonhomologous end joining, suggesting that a balance between BRCA1 and 53BP1 regulates DNA double strand-break (DSB) repair mechanism choice. Here we document that acetylation is a key determinant of this balance. TIP60 acetyltransferase deficiency reduced BRCA1 at DSB chromatin with commensurate increases in 53BP1, whereas HDAC inhibition yielded the opposite effect. TIP60-dependent H4 acetylation diminished 53BP1 binding to H4K20me2 in part through disruption of a salt bridge between H4K16 and Glu1551 in the 53BP1 Tudor domain. Moreover, TIP60 deficiency impaired homologous recombination and conferred sensitivity to PARP inhibition in a 53BP1-dependent manner. These findings demonstrate that acetylation in cis to H4K20me2 regulates relative BRCA1 and 53BP1 DSB chromatin occupancy to direct DNA repair mechanism. | | | 23377543
|
Breast cancer-associated Abraxas mutation disrupts nuclear localization and DNA damage response functions. Solyom, S; Aressy, B; Pylkäs, K; Patterson-Fortin, J; Hartikainen, JM; Kallioniemi, A; Kauppila, S; Nikkilä, J; Kosma, VM; Mannermaa, A; Greenberg, RA; Winqvist, R Science translational medicine
4
122ra23
2011
Abstract anzeigen
Breast cancer is the most common cancer in women in developed countries and has a well-established genetic component. Germline mutations in a network of genes encoding BRCA1, BRCA2, and their interacting partners confer hereditary susceptibility to breast cancer. Abraxas directly interacts with the BRCA1 BRCT (BRCA1 carboxyl-terminal) repeats and contributes to BRCA1-dependent DNA damage responses, making Abraxas a candidate for yet unexplained disease susceptibility. Here, we have screened 125 Northern Finnish breast cancer families for coding region and splice-site Abraxas mutations and genotyped three tagging single-nucleotide polymorphisms within the gene from 991 unselected breast cancer cases and 868 female controls for common cancer-associated variants. A novel heterozygous alteration, c.1082Ggreater than A (Arg361Gln), that results in abrogated nuclear localization and DNA response activities was identified in three breast cancer families and in one additional familial case from an unselected breast cancer cohort, but not in healthy controls (P = 0.002). On the basis of its exclusive occurrence in familial cancers, disease cosegregation, evolutionary conservation, and disruption of critical BRCA1 functions, the recurrent Abraxas c.1082Ggreater than A mutation connects to cancer predisposition. These findings contribute to the concept of a BRCA-centered tumor suppressor network and provide the identity of Abraxas as a new breast cancer susceptibility gene. | Immunofluorescence | | 22357538
|