Synaptotagmins I and II in the developing rat auditory brainstem: Synaptotagmin I is transiently expressed in glutamate-releasing immature inhibitory terminals. Alan P Cooper,Deda C Gillespie The Journal of comparative neurology
519
2010
Zobrazit abstrakt
The lateral superior olive (LSO), a nucleus in the auditory brainstem, computes interaural intensity differences for sound localization by comparing converging excitatory and inhibitory inputs that carry tonotopically matched information from the two ears. Tonotopic refinement in the inhibitory projection pathway from the medial nucleus of the trapezoid body (MNTB) is known to be established during the first postnatal week in rats. During this period, immature MNTB terminals in the LSO contain vesicular transporters for both inhibitory and excitatory amino acids and release glutamate. The primary Ca(2+) sensors for vesicular release in the CNS are understood to be synaptotagmins, and in adult auditory brainstem synaptotagmin 2 is the predominant synaptotagmin. We asked here whether a different Ca(2+) sensor might be expressed in the immature auditory brainstem. We have found that synaptotagmin 1 is indeed expressed transiently in the immature auditory brainstem, most highly in those areas that receive glutamate-releasing immature inhibitory inputs from the MNTB, and that during the first postnatal week synaptotagmin 1 co-localizes with the vesicular glutamate transporter VGLUT3, a marker of glutamate-releasing immature inhibitory terminals from the MNTB. We suggest that immature MNTB terminals may contain two populations of synaptic vesicles, one expressing the vesicular inhibitory amino acid transporter together with synaptotagmin 2 and another expressing VGLUT3 together with synaptotagmin 1. Because Ca(2+) sensing is an important determinant of release properties for the presynaptic terminal, differential expression of the synaptotagmins might allow the differential release of excitatory and inhibitory neurotransmitters in response to differing patterns of neural activity. | 21456023
|
Fast plasma membrane calcium pump PMCA2a concentrates in GABAergic terminals in the adult rat brain. Alain C Burette,Emanuel E Strehler,Richard J Weinberg The Journal of comparative neurology
512
2009
Zobrazit abstrakt
The plasma membrane Ca(2+)-ATPases (PMCA) represent the major high-affinity Ca(2+) extrusion system in the brain. PMCAs comprise four isoforms and over 20 splice variants. Their different functional properties may permit different PMCA splice variants to accommodate different kinds of local [Ca(2+)] transients, but for a specific PMCA to play a unique role in local Ca(2+) handling it must be targeted to the appropriate subcellular compartment. We used immunohistochemistry to study the spatial distribution of PMCA2a-one of the two major carboxyl-terminal splice variants of PMCA2-in the adult rat brain, testing whether this isoform, with especially high basal activity, is targeted to specific subcellular compartments. In striking contrast to the widespread distribution of PMCA2 as a whole, we found that PMCA2a is largely restricted to parvalbumin-positive inhibitory presynaptic terminals throughout the brain. The only major exception to this targeting pattern was in the cerebellar cortex, where PMCA2a also concentrates postsynaptically, in the spines of Purkinje cells. We propose that the fast Ca(2+) activation kinetics and high V(max) of PMCA2a make this pump especially suited for rapid clearance of presynaptic Ca(2+) in fast-spiking inhibitory nerve terminals, which face severe transient calcium loads. Celý text článku | 19025983
|
Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells. Olivia N Dumitrescu,Francesco G Pucci,Kwoon Y Wong,David M Berson The Journal of comparative neurology
517
2009
Zobrazit abstrakt
A key principle of retinal organization is that distinct ON and OFF channels are relayed by separate populations of bipolar cells to different sublaminae of the inner plexiform layer (IPL). ON bipolar cell axons have been thought to synapse exclusively in the inner IPL (the ON sublamina) onto dendrites of ON-type amacrine and ganglion cells. However, M1 melanopsin-expressing ganglion cells and dopaminergic amacrine (DA) cells apparently violate this dogma. Both are driven by ON bipolar cells, but their dendrites stratify in the outermost IPL, within the OFF sublamina. Here, in the mouse retina, we show that some ON cone bipolar cells make ribbon synapses in the outermost OFF sublayer, where they costratify with and contact the dendrites of M1 and DA cells. Whole-cell recording and dye filling in retinal slices indicate that type 6 ON cone bipolars provide some of this ectopic ON channel input. Imaging studies in dissociated bipolar cells show that these ectopic ribbon synapses are capable of vesicular release. There is thus an accessory ON sublayer in the outer IPL. | 19731338
|
VGLUT1 and VGLUT2 innervation in autonomic regions of intact and transected rat spinal cord. Ida J Llewellyn-Smith,Carolyn L Martin,Natalie M Fenwick,Stephen E Dicarlo,Heidi L Lujan,Ann M Schreihofer The Journal of comparative neurology
503
2007
Zobrazit abstrakt
Fast excitatory neurotransmission to sympathetic and parasympathetic preganglionic neurons (SPN and PPN) is glutamatergic. To characterize this innervation in spinal autonomic regions, we localized immunoreactivity for vesicular glutamate transporters (VGLUTs) 1 and 2 in intact cords and after upper thoracic complete transections. Preganglionic neurons were retrogradely labeled by intraperitoneal Fluoro-Gold or with cholera toxin B (CTB) from superior cervical, celiac, or major pelvic ganglia or adrenal medulla. Glutamatergic somata were localized with in situ hybridization for VGLUT mRNA. In intact cords, all autonomic areas contained abundant VGLUT2-immunoreactive axons and synapses. CTB-immunoreactive SPN and PPN received many close appositions from VGLUT2-immunoreactive axons. VGLUT2-immunoreactive synapses occurred on Fluoro-Gold-labeled SPN. Somata with VGLUT2 mRNA occurred throughout the spinal gray matter. VGLUT2 immunoreactivity was not noticeably affected caudal to a transection. In contrast, in intact cords, VGLUT1-immunoreactive axons were sparse in the intermediolateral cell column (IML) and lumbosacral parasympathetic nucleus but moderately dense above the central canal. VGLUT1-immunoreactive close appositions were rare on SPN in the IML and the central autonomic area and on PPN. Transection reduced the density of VGLUT1-immunoreactive axons in sympathetic subnuclei but increased their density in the parasympathetic nucleus. Neuronal cell bodies with VGLUT1 mRNA occurred only in Clarke's column. These data indicate that SPN and PPN are densely innervated by VGLUT2-immunoreactive axons, some of which arise from spinal neurons. In contrast, the VGLUT1-immunoreactive innervation of spinal preganglionic neurons is sparse, and some may arise from supraspinal sources. Increased VGLUT1 immunoreactivity after transection may correlate with increased glutamatergic transmission to PPN. | 17570127
|