Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells. Zeng, GF; Cai, SX; Wu, GJ BMC cancer
11
113
2010
Zobrazit abstrakt
Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM) in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells.Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein.MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on in vitro motility and invasiveness, and in vitro and in vivo tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for in vitro tests in the presence and absence of an anti-METCAM/MUC18 antibody.In MCF7 cells, enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, anchorage-independent colony formation (in vitro tumorigenesis), and in vivo tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture.These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis. Celý text článku | 21450088
|
Suppression of embryonic lung branching morphogenesis by antisense oligonucleotides against HOM/C homeobox factors. Tatsuya Yoshimi,Fumiko Hashimoto,Shigeru Takahashi,Yuji Takahashi In vitro cellular & developmental biology. Animal
46
2009
Zobrazit abstrakt
The role of HOM/C homeobox genes on rat embryonic lung branching morphogenesis was investigated using the lung bud explant culture system in an air/liquid interface. Knock down of homeobox b3 and b4 expression by antisense oligonucleotide treatment repressed airway branch formation, while antisense oligonucleotide against homeobox a3 showed no effect. Addition of antisense Hoxb3 oligonucleotide resulted in upregulation of collagen type III mRNA and fibroblast growth factor 10 mRNA, while that of the T-box regulatory factor-4 was decreased. Consequently, expression of Clara cell-specific secretory protein was decreased. These results suggest a critical role for homeobox b3 and b4 genes in lung airway branching morphogenesis. | 20535580
|