The oncometabolite D-2-hydroxyglutarate induced by mutant IDH1 or -2 blocks osteoblast differentiation in vitro and in vivo. Suijker, J; Baelde, HJ; Roelofs, H; Cleton-Jansen, AM; Bovée, JV Oncotarget
6
14832-42
2015
Zobrazit abstrakt
Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are found in a somatic mosaic fashion in patients with multiple enchondromas. Enchondromas are benign cartilaginous tumors arising in the medulla of bone. The mutant IDH1/2 causes elevated levels of D-2-hydroxyglutarate (D-2-HG). Mesenchymal stem cells (MSC) are the precursor of the osteoblastic, chondrogenic and adipocytic lineage and we hypothesized that increased levels of D-2-HG cause multiple enchondromas by affecting differentiation of MSCs. Bone marrow derived MSCs from different donors were differentiated towards osteoblastic, chondrogenic and adipocytic lineage in the presence or absence of 5 mM D-2-HG. Three of four MSCs showed near complete inhibition of calcification after 3 weeks under osteogenic differentiation conditions in the presence of D-2-HG, indicating a block in osteogenic differentiation. Two of four MSCs showed an increase in differentiation towards the chondrogenic lineage. To evaluate the effect of D-2-HG in vivo we monitored bone development in zebrafish, which revealed an impaired development of vertebrate rings in the presence of D-2-HG compared to control conditions (p-value less than 0.0001). Our data indicate that increased levels of D-2-HG promote chondrogenic over osteogenic differentiation. Thus, mutations in IDH1/2 lead to a local block in osteogenic differentiation during skeletogenesis causing the development of benign cartilaginous tumors. | | | 26046462
|
Epigenetic Modifications of the PGC-1α Promoter during Exercise Induced Expression in Mice. Lochmann, TL; Thomas, RR; Bennett, JP; Taylor, SM PloS one
10
e0129647
2015
Zobrazit abstrakt
The transcriptional coactivator, PGC-1α, is known for its role in mitochondrial biogenesis. Although originally thought to exist as a single protein isoform, recent studies have identified additional promoters which produce multiple mRNA transcripts. One of these promoters (promoter B), approximately 13.7 kb upstream of the canonical PGC-1α promoter (promoter A), yields alternative transcripts present at levels much lower than the canonical PGC-1α mRNA transcript. In skeletal muscle, exercise resulted in a substantial, rapid increase of mRNA of these alternative PGC-1α transcripts. Although the β2-adrenergic receptor was identified as a signaling pathway that activates transcription from PGC-1α promoter B, it is not yet known what molecular changes occur to facilitate PGC-1α promoter B activation following exercise. We sought to determine whether epigenetic modifications were involved in this exercise response in mouse skeletal muscle. We found that DNA hydroxymethylation correlated to increased basal mRNA levels from PGC-1α promoter A, but that DNA methylation appeared to play no role in the exercise-induced activation of PGC-1α promoter B. The level of the activating histone mark H3K4me3 increased with exercise 2-4 fold across PGC-1α promoter B, but remained unaltered past the canonical PGC-1α transcriptional start site. Together, these data show that epigenetic modifications partially explain exercise-induced changes in the skeletal muscle mRNA levels of PGC-1α isoforms. | | | 26053857
|
Monozygotic twins discordant for common variable immunodeficiency reveal impaired DNA demethylation during naïve-to-memory B-cell transition. Rodríguez-Cortez, VC; Del Pino-Molina, L; Rodríguez-Ubreva, J; Ciudad, L; Gómez-Cabrero, D; Company, C; Urquiza, JM; Tegnér, J; Rodríguez-Gallego, C; López-Granados, E; Ballestar, E Nature communications
6
7335
2015
Zobrazit abstrakt
Common variable immunodeficiency (CVID), the most frequent primary immunodeficiency characterized by loss of B-cell function, depends partly on genetic defects, and epigenetic changes are thought to contribute to its aetiology. Here we perform a high-throughput DNA methylation analysis of this disorder using a pair of CVID-discordant MZ twins and show predominant gain of DNA methylation in CVID B cells with respect to those from the healthy sibling in critical B lymphocyte genes, such as PIK3CD, BCL2L1, RPS6KB2, TCF3 and KCNN4. Individual analysis confirms hypermethylation of these genes. Analysis in naive, unswitched and switched memory B cells in a CVID patient cohort shows impaired ability to demethylate and upregulate these genes in transitioning from naive to memory cells in CVID. Our results not only indicate a role for epigenetic alterations in CVID but also identify relevant DNA methylation changes in B cells that could explain the clinical manifestations of CVID individuals. | | | 26081581
|
Lysine-specific demethylase (LSD1/KDM1A) and MYCN cooperatively repress tumor suppressor genes in neuroblastoma. Amente, S; Milazzo, G; Sorrentino, MC; Ambrosio, S; Di Palo, G; Lania, L; Perini, G; Majello, B Oncotarget
6
14572-83
2015
Zobrazit abstrakt
The chromatin-modifying enzyme lysine-specific demethylase 1, KDM1A/LSD1 is involved in maintaining the undifferentiated, malignant phenotype of neuroblastoma cells and its overexpression correlated with aggressive disease, poor differentiation and infaust outcome. Here, we show that LSD1 physically binds MYCN both in vitro and in vivo and that such an interaction requires the MYCN BoxIII. We found that LSD1 co-localizes with MYCN on promoter regions of CDKN1A/p21 and Clusterin (CLU) suppressor genes and cooperates with MYCN to repress the expression of these genes. KDM1A needs to engage with MYCN in order to associate with the CDKN1A and CLU promoters. The expression of CLU and CDKN1A can be restored in MYCN-amplified cells by pharmacological inhibition of LSD1 activity or knockdown of its expression. Combined pharmacological inhibition of MYCN and LSD1 through the use of small molecule inhibitors synergistically reduces MYCN-amplified Neuroblastoma cell viability in vitro. These findings demonstrate that LSD1 is a critical co-factor of the MYCN repressive function, and suggest that combination of LSD1 and MYCN inhibitors may have strong therapeutic relevance to counteract MYCN-driven oncogenesis. | | | 26062444
|
Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids. Yang, L; Li, B; Zheng, XY; Li, J; Yang, M; Dong, X; He, G; An, C; Deng, XW Nature communications
6
7309
2015
Zobrazit abstrakt
Heterosis, the phenotypic superiority of a hybrid over its parents, has been demonstrated for many traits in Arabidopsis thaliana, but its effect on defence remains largely unexplored. Here, we show that hybrids between some A. thaliana accessions show increased resistance to the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Comparisons of transcriptomes between these hybrids and their parents after inoculation reveal that several key salicylic acid (SA) biosynthesis genes are significantly upregulated in hybrids. Moreover, SA levels are higher in hybrids than in either parent. Increased resistance to Pst DC3000 is significantly compromised in hybrids of pad4 mutants in which the SA biosynthesis pathway is blocked. Finally, increased histone H3 acetylation of key SA biosynthesis genes correlates with their upregulation in infected hybrids. Our data demonstrate that enhanced activation of SA biosynthesis in A. thaliana hybrids may contribute to their increased resistance to a biotrophic bacterial pathogen. | | | 26065719
|
Genome-wide binding and mechanistic analyses of Smchd1-mediated epigenetic regulation. Chen, K; Hu, J; Moore, DL; Liu, R; Kessans, SA; Breslin, K; Lucet, IS; Keniry, A; Leong, HS; Parish, CL; Hilton, DJ; Lemmers, RJ; van der Maarel, SM; Czabotar, PE; Dobson, RC; Ritchie, ME; Kay, GF; Murphy, JM; Blewitt, ME Proceedings of the National Academy of Sciences of the United States of America
112
E3535-44
2015
Zobrazit abstrakt
Structural maintenance of chromosomes flexible hinge domain containing 1 (Smchd1) is an epigenetic repressor with described roles in X inactivation and genomic imprinting, but Smchd1 is also critically involved in the pathogenesis of facioscapulohumeral dystrophy. The underlying molecular mechanism by which Smchd1 functions in these instances remains unknown. Our genome-wide transcriptional and epigenetic analyses show that Smchd1 binds cis-regulatory elements, many of which coincide with CCCTC-binding factor (Ctcf) binding sites, for example, the clustered protocadherin (Pcdh) genes, where we show Smchd1 and Ctcf act in opposing ways. We provide biochemical and biophysical evidence that Smchd1-chromatin interactions are established through the homodimeric hinge domain of Smchd1 and, intriguingly, that the hinge domain also has the capacity to bind DNA and RNA. Our results suggest Smchd1 imparts epigenetic regulation via physical association with chromatin, which may antagonize Ctcf-facilitated chromatin interactions, resulting in coordinated transcriptional control. | | | 26091879
|
Retrovirus-Mediated Expression of E2A-PBX1 Blocks Lymphoid Fate but Permits Retention of Myeloid Potential in Early Hematopoietic Progenitors. Woodcroft, MW; Nanan, K; Thompson, P; Tyryshkin, K; Smith, SP; Slany, RK; LeBrun, DP PloS one
10
e0130495
2015
Zobrazit abstrakt
The oncogenic transcription factor E2A-PBX1 is expressed consequent to chromosomal translocation 1;19 and is an important oncogenic driver in cases of pre-B-cell acute lymphoblastic leukemia (ALL). Elucidating the mechanism by which E2A-PBX1 induces lymphoid leukemia would be expedited by the availability of a tractable experimental model in which enforced expression of E2A-PBX1 in hematopoietic progenitors induces pre-B-cell ALL. However, hematopoietic reconstitution of irradiated mice with bone marrow infected with E2A-PBX1-expressing retroviruses consistently gives rise to myeloid, not lymphoid, leukemia. Here, we elucidate the hematopoietic consequences of forced E2A-PBX1 expression in primary murine hematopoietic progenitors. We show that introducing E2A-PBX1 into multipotent progenitors permits the retention of myeloid potential but imposes a dense barrier to lymphoid development prior to the common lymphoid progenitor stage, thus helping to explain the eventual development of myeloid, and not lymphoid, leukemia in transplanted mice. Our findings also indicate that E2A-PBX1 enforces the aberrant, persistent expression of some genes that would normally have been down-regulated in the subsequent course of hematopoietic maturation. We show that enforced expression of one such gene, Hoxa9, a proto-oncogene associated with myeloid leukemia, partially reproduces the phenotype produced by E2A-PBX1 itself. Existing evidence suggests that the 1;19 translocation event takes place in committed B-lymphoid progenitors. However, we find that retrovirus-enforced expression of E2A-PBX1 in committed pro-B-cells results in cell cycle arrest and apoptosis. Our findings indicate that the neoplastic phenotype induced by E2A-PBX1 is determined by the developmental stage of the cell into which the oncoprotein is introduced. | | | 26098938
|
A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics. Gallego Romero, I; Pavlovic, BJ; Hernando-Herraez, I; Zhou, X; Ward, MC; Banovich, NE; Kagan, CL; Burnett, JE; Huang, CH; Mitrano, A; Chavarria, CI; Friedrich Ben-Nun, I; Li, Y; Sabatini, K; Leonardo, TR; Parast, M; Marques-Bonet, T; Laurent, LC; Loring, JF; Gilad, Y eLife
4
e07103
2015
Zobrazit abstrakt
Comparative genomics studies in primates are restricted due to our limited access to samples. In order to gain better insight into the genetic processes that underlie variation in complex phenotypes in primates, we must have access to faithful model systems for a wide range of cell types. To facilitate this, we generated a panel of 7 fully characterized chimpanzee induced pluripotent stem cell (iPSC) lines derived from healthy donors. To demonstrate the utility of comparative iPSC panels, we collected RNA-sequencing and DNA methylation data from the chimpanzee iPSCs and the corresponding fibroblast lines, as well as from 7 human iPSCs and their source lines, which encompass multiple populations and cell types. We observe much less within-species variation in iPSCs than in somatic cells, indicating the reprogramming process erases many inter-individual differences. The low within-species regulatory variation in iPSCs allowed us to identify many novel inter-species regulatory differences of small magnitude. | | | 26102527
|
TELP, a sensitive and versatile library construction method for next-generation sequencing. Peng, X; Wu, J; Brunmeir, R; Kim, SY; Zhang, Q; Ding, C; Han, W; Xie, W; Xu, F Nucleic acids research
43
e35
2015
Zobrazit abstrakt
Next-generation sequencing has been widely used for the genome-wide profiling of histone modifications, transcription factor binding and gene expression through chromatin immunoprecipitated DNA sequencing (ChIP-seq) and cDNA sequencing (RNA-seq). Here, we describe a versatile library construction method that can be applied to both ChIP-seq and RNA-seq on the widely used Illumina platforms. Standard methods for ChIP-seq library construction require nanograms of starting DNA, substantially limiting its application to rare cell types or limited clinical samples. By minimizing the DNA purification steps that cause major sample loss, our method achieved a high sensitivity in ChIP-seq library preparation. Using this method, we achieved the following: (i) generated high-quality epigenomic and transcription factor-binding maps using ChIP-seq for murine adipocytes; (ii) successfully prepared a ChIP-seq library from as little as 25 pg of starting DNA; (iii) achieved paired-end sequencing of the ChIP-seq libraries; (iv) systematically profiled gene expression dynamics during murine adipogenesis using RNA-seq and (v) preserved the strand specificity of the transcripts in RNA-seq. Given its sensitivity and versatility in both double-stranded and single-stranded DNA library construction, this method has wide applications in genomic, epigenomic, transcriptomic and interactomic studies. | | Mouse | 25223787
|
Identification of a new selective chemical inhibitor of mutant isocitrate dehydrogenase-1. Kim, HJ; Choi, BY; Keum, YS Journal of cancer prevention
20
78-83
2015
Zobrazit abstrakt
Recent genome-wide sequencing studies have identified unexpected genetic alterations in cancer. In particular, missense mutations in isocitrate dehydrogenase-1 (IDH1) at arginine 132, mostly substituted into histidine (IDH1-R132H) were observed to frequently occur in glioma patients.We have purified recombinant IDH1 and IDH1-R132H proteins and monitored their catalytic activities. In parallel experiments, we have attempted to find new selective IDH1-R132H chemical inhibitor(s) from a fragment-based chemical library.We have found that IDH1, but not IDH1-R132H, can catalyze the conversion of isocitrate into α-ketoglutarate (α-KG). In addition, we have observed that IDH1-R132H was more efficient than IDH1 in converting α-KG into (R)-2-hydroxyglutarate (R-2HG). Moreover, we have identified a new hit molecule, e.g., 2-(3-trifluoromethylphenyl)isothioazol-3(2H)-one as a new selective IDH1-R132H inhibitor.We have observed an underlying biochemical mechanism explaining how a heterozygous IDH1 mutation contributes to the generation of R-2HG and increases cellular histone H3 trimethylation levels. We have also identified a novel selective IDH1-R132H chemical hit molecule, e.g., 2-(3-trifluoromethylphenyl)isothioazol-3(2H)-one, which could be used for a future lead development against IDH1-R132H. | | | 25853107
|