Vibrissa Self-Motion and Touch Are Reliably Encoded along the Same Somatosensory Pathway from Brainstem through Thalamus. Moore, JD; Mercer Lindsay, N; Deschênes, M; Kleinfeld, D PLoS biology
13
e1002253
2015
Zobrazit abstrakt
Active sensing involves the fusion of internally generated motor events with external sensation. For rodents, active somatosensation includes scanning the immediate environment with the mystacial vibrissae. In doing so, the vibrissae may touch an object at any angle in the whisk cycle. The representation of touch and vibrissa self-motion may in principle be encoded along separate pathways, or share a single pathway, from the periphery to cortex. Past studies established that the spike rates in neurons along the lemniscal pathway from receptors to cortex, which includes the principal trigeminal and ventral-posterior-medial thalamic nuclei, are substantially modulated by touch. In contrast, spike rates along the paralemniscal pathway, which includes the rostral spinal trigeminal interpolaris, posteromedial thalamic, and ventral zona incerta nuclei, are only weakly modulated by touch. Here we find that neurons along the lemniscal pathway robustly encode rhythmic whisking on a cycle-by-cycle basis, while encoding along the paralemniscal pathway is relatively poor. Thus, the representations of both touch and self-motion share one pathway. In fact, some individual neurons carry both signals, so that upstream neurons with a supralinear gain function could, in principle, demodulate these signals to recover the known decoding of touch as a function of vibrissa position in the whisk cycle. | | | 26393890
|
Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-β plaque formation in organotypic hippocampal slice cultures. Hellwig, S; Masuch, A; Nestel, S; Katzmarski, N; Meyer-Luehmann, M; Biber, K Scientific reports
5
14624
2015
Zobrazit abstrakt
The role of microglia in amyloid-β (Aβ) deposition is controversial. In the present study, an organotypic hippocampal slice culture (OHSC) system with an in vivo-like microglial-neuronal environment was used to investigate the potential contribution of microglia to Aβ plaque formation. We found that microglia ingested Aβ, thereby preventing plaque formation in OHSCs. Conversely, Aβ deposits formed rapidly in microglia-free wild-type slices. The capacity to prevent Aβ plaque formation was absent in forebrain microglia from young adult but not juvenile 5xFamilial Alzheimer's disease (FAD) mice. Since no loss of Aβ clearance capacity was observed in both wild-type and cerebellar microglia from 5xFAD animals, the high Aβ1-42 burden in the forebrain of 5xFAD animals likely underlies the exhaustion of microglial Aβ clearance capacity. These data may therefore explain why Aβ plaque formation has never been described in wild-type mice, and point to a beneficial role of microglia in AD pathology. We also describe a new method to study Aβ plaque formation in a cell culture setting. | | | 26416689
|
Hepatic but Not CNS-Expressed Human C-Reactive Protein Inhibits Experimental Autoimmune Encephalomyelitis in Transgenic Mice. Wright, TT; Jimenez, RV; Morgan, TE; Bali, N; Hou, X; McCrory, MA; Finch, CE; Szalai, AJ Autoimmune diseases
2015
640171
2015
Zobrazit abstrakt
We recently demonstrated that human C-reactive protein (CRP), expressed hepatically in transgenic mice (CRPtg), improved the outcome of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). The liver is the primary site of CRP synthesis in humans and in CRPtg mice but is also expressed by both at low levels in the CNS. To determine if CNS expression of human CRP is sufficient to impact EAE, we generated neuronal CRP transgenic mice (nCRPtg) wherein human CRP expression is driven by the neuron-specific Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) gene promoter. We found that hepatically expressed/blood-borne CRP, but not CNS expressed CRP, lessened EAE severity. These outcomes indicate that the protective actions of human CRP in EAE are manifested in the periphery and not in the CNS and reveal a previously unappreciated site specificity for the beneficial actions of CRP in CNS disease. | | | 26421184
|
Endothelin-1 induces LIMK2-mediated programmed necrotic neuronal death independent of NOS activity. Ko, AR; Hyun, HW; Min, SJ; Kim, JE; Kang, TC Molecular brain
8
58
2015
Zobrazit abstrakt
Recently, we have reported that LIM kinase 2 (LIMK2) involves programmed necrotic neuronal deaths induced by aberrant cyclin D1 expression following status epilepticus (SE). Up-regulation of LIMK2 expression induces neuronal necrosis by impairment of dynamin-related protein 1 (DRP1)-mediated mitochondrial fission. However, we could not elucidate the upstream effecter for LIMK2-mediated neuronal death. Thus, we investigated the role of endothelin-1 (ET-1) in LIMK2-mediated neuronal necrosis, since ET-1 involves neuronal death via various pathways.Following SE, ET-1 concentration and its mRNA were significantly increased in the hippocampus with up-regulation of ETB receptor expression. BQ788 (an ETB receptor antagonist) effectively attenuated SE-induced neuronal damage as well as reduction in LIMK2 mRNA/protein expression. In addition, BQ788 alleviated up-regulation of Rho kinase 1 (ROCK1) expression and impairment of DRP1-mediated mitochondrial fission in CA1 neurons following SE. BQ788 also attenuated neuronal death and up-regulation of LIMK2 expression induced by exogenous ET-1 injection.These findings suggest that ET-1 may be one of the upstream effectors for programmed neuronal necrosis through abnormal LIMK2 over-expression by ROCK1. | | | 26438559
|
Brain Localization and Neurotoxicity Evaluation of Polysorbate 80-Modified Chitosan Nanoparticles in Rats. Yuan, ZY; Hu, YL; Gao, JQ PloS one
10
e0134722
2015
Zobrazit abstrakt
The toxicity evaluation of inorganic nanoparticles has been reported by an increasing number of studies, but toxicity studies concerned with biodegradable nanoparticles, especially the neurotoxicity evaluation, are still limited. For example, the potential neurotoxicity of Polysorbate 80-modified chitosan nanoparticles (Tween 80-modified chitosan nanoparticles, TmCS-NPs), one of the most widely used brain targeting vehicles, remains unknown. In the present study, TmCS-NPs with a particle size of 240 nm were firstly prepared by ionic cross-linking of chitosan with tripolyphosphate. Then, these TmCS-NPs were demonstrated to be entered into the brain and specially deposited in the frontal cortex and cerebellum after systemic injection. Moreover, the concentration of TmCS-NPs in these two regions was found to decrease over time. Although no obvious changes were observed for oxidative stress in the in vivo rat model, the body weight was found to remarkably decreased in a dose-dependent manner after exposure to TmCS-NPs for seven days. Besides, apoptosis and necrosis of neurons, slight inflammatory response in the frontal cortex, and decrease of GFAP expression in the cerebellum were also detected in mouse injected with TmCS-NPs. This study is the first report on the sub-brain biodistribution and neurotoxicity studies of TmCS-NPs. Our results provide new insights into the toxicity evaluation of nanoparticles and our findings would help contribute to a better understanding of the neurotoxicity of biodegradable nanomaterials used in pharmaceutics. | | | 26248340
|
PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Radford, H; Moreno, JA; Verity, N; Halliday, M; Mallucci, GR Acta neuropathologica
130
633-42
2015
Zobrazit abstrakt
The PERK-eIF2α branch of the Unfolded Protein Response (UPR) mediates the transient shutdown of translation in response to rising levels of misfolded proteins in the endoplasmic reticulum. PERK and eIF2α activation are increasingly recognised in postmortem analyses of patients with neurodegenerative disorders, including Alzheimer's disease, the tauopathies and prion disorders. These are all characterised by the accumulation of misfolded disease-specific proteins in the brain in association with specific patterns of neuronal loss, but the role of UPR activation in their pathogenesis is unclear. In prion-diseased mice, overactivation of PERK-P/eIF2α-P signalling results in the sustained reduction in global protein synthesis, leading to synaptic failure, neuronal loss and clinical disease. Critically, restoring vital neuronal protein synthesis rates by inhibiting the PERK-eIF2α pathway, both genetically and pharmacologically, prevents prion neurodegeneration downstream of misfolded prion protein accumulation. Here we show that PERK-eIF2α-mediated translational failure is a key process leading to neuronal loss in a mouse model of frontotemporal dementia, where the misfolded protein is a form of mutant tau. rTg4510 mice, which overexpress the P301L tau mutation, show dysregulated PERK signalling and sustained repression of protein synthesis by 6 months of age, associated with onset of neurodegeneration. Treatment with the PERK inhibitor, GSK2606414, from this time point in mutant tau-expressing mice restores protein synthesis rates, protecting against further neuronal loss, reducing brain atrophy and abrogating the appearance of clinical signs. Further, we show that PERK-eIF2α activation also contributes to the pathological phosphorylation of tau in rTg4510 mice, and that levels of phospho-tau are lowered by PERK inhibitor treatment, providing a second mechanism of protection. The data support UPR-mediated translational failure as a generic pathogenic mechanism in protein-misfolding disorders, including tauopathies, that can be successfully targeted for prevention of neurodegeneration. | | | 26450683
|
Taenia solium: Development of an Experimental Model of Porcine Neurocysticercosis. Fleury, A; Trejo, A; Cisneros, H; García-Navarrete, R; Villalobos, N; Hernández, M; Villeda Hernández, J; Hernández, B; Rosas, G; Bobes, RJ; de Aluja, AS; Sciutto, E; Fragoso, G PLoS neglected tropical diseases
9
e0003980
2015
Zobrazit abstrakt
Human neurocysticercosis (NC) is caused by the establishment of Taenia solium larvae in the central nervous system. NC is a severe disease still affecting the population in developing countries of Latin America, Asia, and Africa. While great improvements have been made on NC diagnosis, treatment, and prevention, the management of patients affected by extraparenchymal parasites remains a challenge. The development of a T. solium NC experimental model in pigs that will allow the evaluation of new therapeutic alternatives is herein presented. Activated oncospheres (either 500 or 1000) were surgically implanted in the cerebral subarachnoid space of piglets. The clinical status and the level of serum antibodies in the animals were evaluated for a 4-month period after implantation. The animals were sacrificed, cysticerci were counted during necropsy, and both the macroscopic and microscopic characteristics of cysts were described. Based on the number of established cysticerci, infection efficiency ranged from 3.6% (1000 oncospheres) to 5.4% (500 oncospheres). Most parasites were caseous or calcified (38/63, 60.3%) and were surrounded by an exacerbated inflammatory response with lymphocyte infiltration and increased inflammatory markers. The infection elicited specific antibodies but no neurological signs. This novel experimental model of NC provides a useful tool to evaluate new cysticidal and anti-inflammatory approaches and it should improve the management of severe NC patients, refractory to the current treatments. | | | 26252878
|
TWIK-Related Spinal Cord K⁺ Channel Expression Is Increased in the Spinal Dorsal Horn after Spinal Nerve Ligation. Hwang, HY; Zhang, E; Park, S; Chung, W; Lee, S; Kim, DW; Ko, Y; Lee, W Yonsei medical journal
56
1307-15
2015
Zobrazit abstrakt
The TWIK-related spinal cord K⁺ channel (TRESK) has recently been discovered and plays an important role in nociceptor excitability in the pain pathway. Because there have been no reports on the TRESK expression or its function in the dorsal horn of the spinal cord in neuropathic pain, we analyzed TRESK expression in the spinal dorsal horn in a spinal nerve ligation (SNL) model.We established a SNL mouse model by using the L5-6 spinal nerves ligation. We used real-time polymerase chain reaction and immunohistochemistry to investigate TRESK expression in the dorsal horn and L5 dorsal rot ganglion (DRG).The SNL group showed significantly higher expression of TRESK in the ipsilateral dorsal horn under pain, but low expression in L5 DRG. Double immunofluorescence staining revealed that immunoreactivity of TRESK was mostly restricted in neuronal cells, and that synapse markers GAD67 and VGlut2 appeared to be associated with TRESK expression. We were unable to find a significant association between TRESK and calcineurin by double immunofluorescence.TRESK in spinal cord neurons may contribute to the development of neuropathic pain following injury. | | | 26256973
|
Inner retinal change in a novel rd1-FTL mouse model of retinal degeneration. Greferath, U; Anderson, EE; Jobling, AI; Vessey, KA; Martinez, G; de Iongh, RU; Kalloniatis, M; Fletcher, EL Frontiers in cellular neuroscience
9
293
2015
Zobrazit abstrakt
While photoreceptor loss is the most devastating result of inherited retinal degenerations such as retinitis pigmentosa, inner retinal neurons also undergo significant alteration. Detailing these changes has become important as many vision restorative therapies target the remaining neurons. In this study, the rd1-Fos-Tau-LacZ (rd1-FTL) mouse model was used to explore inner retinal change at a late stage of retinal degeneration, after the loss of photoreceptor nuclei. The rd1-FTL model carries a mutation in the phosphodiesterase gene, Pde6b, and an axonally targeted transgenic beta galactosidase reporter system under the control of the c-fos promoter. Retinae of transgenic rd1-FTL mice and control FTL animals aged 2-12 months were processed for indirect fluorescence immunocytochemistry. At 2 months of age, a time when the majority of photoreceptor nuclei are lost, there was negligible c-fos reporter (FTL) expression, however, from 4 months, reporter expression was observed to increase within subpopulations of amacrine and ganglion cells within the central retina. These areas of inner retinal FTL expression coincided with regions that contained aberrant Müller cells. Specifically, these cells exhibited reduced glutamine synthetase and Kir4.1 immunolabelling, whilst showing evidence of proliferative gliosis (increased cyclinD1 and glial fibrillary acidic protein expression). These changes were limited to distinct regions where cone photoreceptor terminals were absent. Overall, these results highlight that distinct areas of the rd1-FTL central retina undergo significant glial alterations after cone photoreceptor loss. These areas coincide with up-regulation of the c-fos reporter in the inner retina, which may represent a change in neuronal function/plasticity. The rd1-FTL mouse is a useful model system to probe changes that occur in the inner retina at later stages of retinal degeneration. | | | 26283925
|
Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. Bellesi, M; de Vivo, L; Tononi, G; Cirelli, C BMC biology
13
66
2015
Zobrazit abstrakt
Astrocytes can mediate neurovascular coupling, modulate neuronal excitability, and promote synaptic maturation and remodeling. All these functions are likely to be modulated by the sleep/wake cycle, because brain metabolism, neuronal activity and synaptic turnover change as a function of behavioral state. Yet, little is known about the effects of sleep and wake on astrocytes.Here we show that sleep and wake strongly affect both astrocytic gene expression and ultrastructure in the mouse brain. Using translating ribosome affinity purification technology and microarrays, we find that 1.4 % of all astrocytic transcripts in the forebrain are dependent on state (three groups, sleep, wake, short sleep deprivation; six mice per group). Sleep upregulates a few select genes, like Cirp and Uba1, whereas wake upregulates many genes related to metabolism, the extracellular matrix and cytoskeleton, including Trio, Synj2 and Gem, which are involved in the elongation of peripheral astrocytic processes. Using serial block face scanning electron microscopy (three groups, sleep, short sleep deprivation, chronic sleep restriction; three mice per group, greater than 100 spines per mouse, 3D), we find that a few hours of wake are sufficient to bring astrocytic processes closer to the synaptic cleft, while chronic sleep restriction also extends the overall astrocytic coverage of the synapse, including at the axon-spine interface, and increases the available astrocytic surface in the neuropil.Wake-related changes likely reflect an increased need for glutamate clearance, and are consistent with an overall increase in synaptic strength when sleep is prevented. The reduced astrocytic coverage during sleep, instead, may favor glutamate spillover, thus promoting neuronal synchronization during non-rapid eye movement sleep. | | | 26303010
|