Minimal features of efficient incorporation of the hemagglutinin-neuraminidase protein into sendai virus particles. Essaidi-Laziosi, M; Shevtsova, AS; Roux, L Journal of virology
88
303-13
2014
Zobrazit abstrakt
Two transmembrane glycoproteins form spikes on the surface of Sendai virus, a member of the Respirovirus genus of the Paramyxovirinae subfamily of the Paramyxoviridae family: the hemagglutinin-neuraminidase (HN) and the fusion (F) proteins. HN, in contrast to F, is dispensable for viral particle production, as normal amounts of particles can be produced with highly reduced levels of HN. This HN reduction can result from mutation of an SYWST motif in its cytoplasmic tail to AFYKD. HNAFYKD accumulates at the infected cell surface but does not get incorporated into particles. In this work, we derived experimental tools to rescue HNAFYKD incorporation. We found that coexpression of a truncated HN harboring the wild-type cytoplasmic tail, the transmembrane domain, and at most 80 amino acids of the ectodomain was sufficient to complement defective HNAFYKD incorporation into particles. This relied on formation of disulfide-bound heterodimers carried out by the two cysteines present in the HN 80-amino-acid (aa) ectodomain. Finally, the replacement of the measles virus H cytoplasmic and transmembrane domains with the corresponding HN domains promoted measles virus H incorporation in Sendai virus particles. | 24155372
|
The measles virus hemagglutinin stalk: structures and functions of the central fusion activation and membrane-proximal segments. Navaratnarajah, CK; Kumar, S; Generous, A; Apte-Sengupta, S; Mateo, M; Cattaneo, R Journal of virology
88
6158-67
2014
Zobrazit abstrakt
The measles virus (MeV) membrane fusion apparatus consists of a fusion protein trimer and an attachment protein tetramer. To trigger membrane fusion, the heads of the MeV attachment protein, hemagglutinin (H), bind cellular receptors while the 96-residue-long H stalk transmits the triggering signal. Structural and functional studies of the triggering mechanism of other paramyxoviruses suggest that receptor binding to their hemagglutinin-neuraminidase (HN) results in signal transmission through the central segments of their stalks. To gain insight into H-stalk structure and function, we individually replaced its residues with cysteine. We then assessed how stable the mutant proteins are, how efficiently they can be cross-linked by disulfide bonds, whether cross-linking results in loss of function, and, in this case, whether disulfide bond reduction restores function. While many residues in the central segment of the stalk and in the spacer segment above it can be efficiently cross-linked by engineered disulfide bonds, we report here that residues 59 to 79 cannot, suggesting that the 20 membrane-proximal residues are not engaged in a tetrameric structure. Rescue-of-function studies by disulfide bond reduction resulted in the redefinition and extension of the central fusion-activation segment as covering residues 84 to 117. In particular, we identified four residues located between positions 92 and 99, the function of which cannot be restored by disulfide bond reduction after cysteine mutagenesis. These mutant H proteins reached the cell surface as complex oligomers but could not trigger membrane fusion. We discuss these observations in the context of the stalk exposure model of membrane fusion triggering by paramyxoviruses.Measles virus, while being targeted for eradication, still causes significant morbidity and mortality. Here, we seek to understand how it enters cells by membrane fusion. Two viral integral membrane glycoproteins (hemagglutinin tetramers and fusion protein trimers) mediate the concerted receptor recognition and membrane fusion processes. Since previous studies have suggested that the hemagglutinin stalk transmits the triggering signal to the fusion protein trimer, we completed an analysis of its structure and function by systematic Cys mutagenesis. We report that while certain residues of the central stalk segment confer specificity to the interaction with the fusion protein trimer, others are necessary to allow folding of the H-oligomer in a standard conformation conducive to fusion triggering, and still other residues sustain the conformational change that transmits the fusion-triggering signal. | 24648460
|
Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. Noyce, RS; Bondre, DG; Ha, MN; Lin, LT; Sisson, G; Tsao, MS; Richardson, CD PLoS pathogens
7
e1002240
2010
Zobrazit abstrakt
Vaccine and laboratory adapted strains of measles virus can use CD46 as a receptor to infect many human cell lines. However, wild type isolates of measles virus cannot use CD46, and they infect activated lymphocytes, dendritic cells, and macrophages via the receptor CD150/SLAM. Wild type virus can also infect epithelial cells of the respiratory tract through an unidentified receptor. We demonstrate that wild type measles virus infects primary airway epithelial cells grown in fetal calf serum and many adenocarcinoma cell lines of the lung, breast, and colon. Transfection of non-infectable adenocarcinoma cell lines with an expression vector encoding CD150/SLAM rendered them susceptible to measles virus, indicating that they were virus replication competent, but lacked a receptor for virus attachment and entry. Microarray analysis of susceptible versus non-susceptible cell lines was performed, and comparison of membrane protein gene transcripts produced a list of 11 candidate receptors. Of these, only the human tumor cell marker PVRL4 (Nectin 4) rendered cells amenable to measles virus infections. Flow cytometry confirmed that PVRL4 is highly expressed on the surfaces of susceptible lung, breast, and colon adenocarcinoma cell lines. Measles virus preferentially infected adenocarcinoma cell lines from the apical surface, although basolateral infection was observed with reduced kinetics. Confocal immune fluorescence microscopy and surface biotinylation experiments revealed that PVRL4 was expressed on both the apical and basolateral surfaces of these cell lines. Antibodies and siRNA directed against PVRL4 were able to block measles virus infections in MCF7 and NCI-H358 cancer cells. A virus binding assay indicated that PVRL4 was a bona fide receptor that supported virus attachment to the host cell. Several strains of measles virus were also shown to use PVRL4 as a receptor. Measles virus infection reduced PVRL4 surface expression in MCF7 cells, a property that is characteristic of receptor-associated viral infections. | 21901103
|
Sendai virus particle production: basic requirements and role of the SYWST motif present in HN cytoplasmic tail. Anne-Sophie Gosselin-Grenet,Geneviève Mottet-Osman,Laurent Roux Virology
405
2009
Zobrazit abstrakt
Sendai virus (SeV) HN protein is dispensable for virus particle production. HN incorporation into virions strictly depends on a cytoplasmic domain SYWST motif. HNAFYKD, with SYWST replaced with the analogous sequence of measles virus (MeV) H (AFYKD), is not incorporated in virus particles produced by LLCMK2 cells, although it is normally expressed at the plasma membrane. Unlike HNSYWST, HNAFYKD is not internalized to late endosomes, raising the possibility that HN internalization is required for uptake into virus particles. Various mosaic MeV-H containing increasing amounts of the SeV-HN all failed to be taken up in SeV virions. However, when co-expressed with HNAFYKD these MeV-H chimera induced HNAFYKD uptake into virions showing that internalization is not a prerequisite for HN uptake into particles. We propose that HN incorporation in virus particles requires first neutralization by HN of a putative inhibitor of infectious particle formation. | 20633915
|
Measles virus selectively blind to signaling lymphocytic activation molecule (SLAM; CD150) is attenuated and induces strong adaptive immune responses in rhesus monkeys. VH Leonard, G Hodge, J Reyes-Del Valle, MB McChesney, R Cattaneo Journal of virology
84
3413-3420
2009
Zobrazit abstrakt
The signaling lymphocytic activation molecule (SLAM; CD150) is the immune cell receptor for measles virus (MV). To assess the importance of the SLAM-MV interactions for virus spread and pathogenesis, we generated a wild-type IC-B MV selectively unable to recognize human SLAM (SLAM-blind). This virus differs from the fully virulent wild-type IC-B strain by a single arginine-to-alanine substitution at amino acid 533 of the attachment protein hemagglutinin and infects cells through SLAM about 40 times less efficiently than the isogenic wild-type strain. Ex vivo, this virus infects primary lymphocytes at low levels regardless of SLAM expression. When a group of six rhesus monkeys (Macaca mulatta) was inoculated intranasally with the SLAM-blind virus, no clinical symptoms were documented. Only one monkey had low-level viremia early after infection, whereas all the hosts in the control group had high viremia levels. Despite minimal, if any, viremia, all six hosts generated neutralizing antibody titers close to those of the control monkeys while MV-directed cellular immunity reached levels at least as high as in wild-type-infected monkeys. These findings prove formally that efficient SLAM recognition is necessary for MV virulence and pathogenesis. They also suggest that the selectively SLAM-blind wild-type MV can be developed into a vaccine vector., idnum { R01 AI063476/AI/NIAID NIH HHS Celý text článku | 20071568
|
The measles virus fusion protein transmembrane region modulates availability of an active glycoprotein complex and fusion efficiency. Mühlebach, MD; Leonard, VH; Cattaneo, R Journal of virology
82
11437-45
2008
Zobrazit abstrakt
The glycoprotein complex of paramyxoviruses mediates receptor binding and membrane fusion. In particular, the measles virus (MV) fusion (F) protein executes membrane fusion, after receptor binding by the hemagglutinin (H) protein. Structures and single amino acids influencing fusion function have been identified in the F-protein ectodomain and cytoplasmic tail, but not in its transmembrane (TM) region. Since this region influences function of the envelope proteins of other viruses, we examined its role in the MV F protein. Alanine-scanning mutagenesis revealed that an F protein with a single mutation of a central TM region leucine (L507A) was more fusogenic than the unmodified F protein while retaining similar kinetics of proteolytic processing. In contrast, substitution of residues located near the edges of the lipid bilayer reduced fusion activity. This was true not only when the mutated F proteins were coexpressed with H but also in the context of infections with recombinant viruses. Analysis of the H-F complexes with reduced fusion activities revealed that more precursor (F(0)) than activated (F(1+2)) protein coprecipitated with H. In contrast, in complexes with enhanced fusion activity, including H-F(L507A), the F(0)/F(1+2) ratio shifted toward F(1+2). Thus, fusion activity correlated with an active F-H protein complex, and the MV F protein TM region modulated availability of this complex. Celý text článku | 18786999
|
Dynamic interaction of the measles virus hemagglutinin with its receptor signaling lymphocytic activation molecule (SLAM, CD150). Navaratnarajah, CK; Vongpunsawad, S; Oezguen, N; Stehle, T; Braun, W; Hashiguchi, T; Maenaka, K; Yanagi, Y; Cattaneo, R The Journal of biological chemistry
283
11763-71
2008
Zobrazit abstrakt
The interaction of measles virus with its receptor signaling lymphocytic activation molecule (SLAM) controls cell entry and governs tropism. We predicted potential interface areas of the measles virus attachment protein hemagglutinin to begin the investigation. We then assessed the relevance of individual amino acids located in these areas for SLAM-binding and SLAM-dependent membrane fusion, as measured by surface plasmon resonance and receptor-specific fusion assays, respectively. These studies identified one hemagglutinin protein residue, isoleucine 194, which is essential for primary binding. The crystal structure of the hemagglutinin-protein localizes Ile-194 at the interface of propeller blades 5 and 6, and our data indicate that a small aliphatic side chain of residue 194 stabilizes a protein conformation conducive to binding. In contrast, a quartet of residues previously shown to sustain SLAM-dependent fusion is not involved in binding. Instead, our data prove that after binding, this quartet of residues on propeller blade 5 conducts conformational changes that are receptor-specific. Our study sets a structure-based stage for understanding how the SLAM-elicited conformational changes travel through the H-protein ectodomain before triggering fusion protein unfolding and membrane fusion. Celý text článku | 18292085
|
CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Hsu, EC; Iorio, C; Sarangi, F; Khine, AA; Richardson, CD Virology
279
9-21
2001
Zobrazit abstrakt
Natural isolates of measles virus readily infect several lymphocyte cell lines. These viruses appear to use a receptor other than CD46, the molecule to which most laboratory strains of virus bind. Methods used to identify and characterize this lymphocyte receptor for measles virus are described in this study. A binding assay with a soluble form of measles virus H protein demonstrated that B-cell lines, activated with Epstein-Barr virus, or T cells, transformed with human T-cell leukemia virus, exhibit this receptor on their cell surfaces. On the other hand, resting lymphocytes, monocytes, or immature leukocytes either failed to express or possessed reduced levels of this receptor. A cDNA library derived from B95-8 marmoset B-cell lines was used to identify this receptor through expression cloning. This molecule was shown to be CDw150, which is also known as the signaling lymphocytic activation molecule (SLAM). When the lymphocyte receptor was expressed in Chinese hamster ovary (CHOP) or human embryonic kidney (293T) cells, these cells became susceptible to lymphotropic as well as laboratory strains of measles virus. Binding assays confirmed that either lymphotropic or laboratory strains of measles virus could adhere to human or marmoset CDw150, but interaction with the mouse homolog was weak. These infections were independent of the presence of CD46 on the host cell surface. Interaction of measles virus with CDw150(SLAM) could explain the immunosuppressive properties of this virus. | 11145884
|
Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Grote, D, et al. Blood, 97: 3746-54 (2001)
2001
Zobrazit abstrakt
Derivatives of the Edmonston-B strain of measles virus (MV-Ed) are safe, live attenuated measles virus (MV) vaccines that have been used worldwide for more than 30 years. The cytoreductive potential of MV-Ed has been investigated in murine models of both aggressive and indolent B-cell lymphoma in severe combined immunodeficient (SCID) mice. The rationale for these studies was generated by experience with viral fusogenic membrane glycoproteins as cytotoxic genes and the recognition of the potential of replicating viruses in the treatment of human malignancy. Intratumoral injection of both unmodified MV-Ed and a strain of MV-Ed genetically modified by the addition of a beta-galactosidase reporter gene (MVlacZ) induced regression of large established human lymphoma xenografts, in contrast to control therapy with UV-inactivated virus, in which all tumors progressed. The antitumor effect still occurred in the presence of passively transferred anti-MV antibody. Intravenous administration of MV also resulted in considerable slowing of tumor progression. Analysis of sections of residual tumor confirmed replication of MV within the tumors. Thus, the vaccine strain of MV mediates regression of large, established human B-cell lymphoma xenografts in SCID mice, and proof of principle is established that MV is oncolytic for lymphomas in vivo. Attenuated MVs may have value as a novel replicating-virus therapy for this group of disorders. (Blood. 2001;97:3746-3754) | 11389012
|