The role of HuR in the post-transcriptional regulation of interleukin-3 in T cells. González-Feliciano, JA; Hernández-Pérez, M; Estrella, LA; Colón-López, DD; López, A; Martínez, M; Maurás-Rivera, KR; Lasalde, C; Martínez, D; Araujo-Pérez, F; González, CI PloS one
9
e92457
2014
Zobrazit abstrakt
Human Interleukin-3 (IL-3) is a lymphokine member of a class of transiently expressed mRNAs harboring Adenosine/Uridine-Rich Elements (ARE) in their 3' untranslated regions (3'-UTRs). The regulatory effects of AREs are often mediated by specific ARE-binding proteins (ARE-BPs). In this report, we show that the human IL-3 3'-UTR plays a post-transcriptional regulation role in two human transformed cell lines. More specifically, we demonstrate that the hIL-3 3'-UTR represses the translation of a luciferase reporter both in HeLa and Jurkat T-cells. These results also revealed that the hIL-3 3'-UTR-mediated translational repression is exerted by an 83 nt region comprised mainly by AREs and some non-ARE sequences. Moreover, electrophoretic mobility shift assays (EMSAs) and UV-crosslinking analysis show that this hIL-3 ARE-rich region recruits five specific protein complexes, including the ARE-BPs HuR and TIA-1. HuR binding to this ARE-rich region appears to be spatially modulated during T-cell activation. Together, these results suggest that HuR recognizes the ARE-rich region and plays a role in the IL-3 3'-UTR-mediated post-transcriptional control in T-cells. | | 24658545
|
Cigarette smoke enhances human rhinovirus-induced CXCL8 production via HuR-mediated mRNA stabilization in human airway epithelial cells. Hudy, MH; Proud, D Respiratory research
14
88
2013
Zobrazit abstrakt
Human rhinovirus (HRV) triggers exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Cigarette smoking is the leading risk factor for the development of COPD and 25% of asthmatics smoke. Smoking asthmatics have worse symptoms and more frequent hospitalizations compared to non-smoking asthmatics. The degree of neutrophil recruitment to the airways correlates with disease severity in COPD and during viral exacerbations of asthma. We have previously shown that HRV and cigarette smoke, in the form of cigarette smoke extract (CSE), each induce expression of the neutrophil chemoattractant and activator, CXCL8, in human airway epithelial cells. Additionally, we demonstrated that the combination of HRV and CSE induces expression of levels of CXCL8 that are at least additive relative to induction by each stimulus alone, and that enhancement of CXCL8 expression by HRV+CSE is regulated, at least in part, via mRNA stabilization. Here we further investigate the mechanisms by which HRV+CSE enhances CXCL8 expression.Primary human bronchial epithelial cells were cultured and treated with CSE alone, HRV alone or the combination of the two stimuli. Stabilizing/destabilizing proteins adenine/uridine-rich factor-1 (AUF-1), KH-type splicing regulatory protein (KHSRP) and human antigen R (HuR) were measured in cell lysates to determine expression levels following treatment. siRNA knockdown of each protein was used to assess their contribution to the induction of CXCL8 expression following treatment of cells with HRV and CSE.We show that total expression of stabilizing/de-stabilizing proteins linked to CXCL8 regulation, including AUF-1, KHSRP and HuR, are not altered by CSE, HRV or the combination of the two stimuli. Importantly, however, siRNA-mediated knock-down of HuR, but not AUF-1 or KHSRP, abolishes the enhancement of CXCL8 by HRV+CSE. Data were analyzed using one-way ANOVA with student Newman-Keuls post hoc analysis and values of p≤ 0.05 were considered significant.Induction of CXCL8 by the combination of HRV and CSE is regulated by mRNA stabilization involving HuR. Thus, targeting the HuR pathway may be an effective method of dampening CXCL8 production during HRV-induced exacerbations of lower airway disease, particularly in COPD patients and asthmatic patients who smoke. | | 23988199
|
Involvement of the RNA-binding protein ARE/poly(U)-binding factor 1 (AUF1) in the cytotoxic effects of proinflammatory cytokines on pancreatic beta cells. Roggli, E; Gattesco, S; Pautz, A; Regazzi, R Diabetologia
55
1699-708
2011
Zobrazit abstrakt
Chronic exposure of pancreatic beta cells to proinflammatory cytokines leads to impaired insulin secretion and apoptosis. ARE/poly(U)-binding factor 1 (AUF1) belongs to a protein family that controls mRNA stability and translation by associating with adenosine- and uridine-rich regions of target messengers. We investigated the involvement of AUF1 in cytokine-induced beta cell dysfunction.Production and subcellular distribution of AUF1 isoforms were analysed by western blotting. To test for their role in the control of beta cell functions, each isoform was overproduced individually in insulin-secreting cells. The contribution to cytokine-mediated beta cell dysfunction was evaluated by preventing the production of AUF1 isoforms by RNA interference. The effect of AUF1 on the production of potential targets was assessed by western blotting.MIN6 cells and human pancreatic islets were found to produce four AUF1 isoforms (p42greater than p45greater than p37greater than p40). AUF1 isoforms were mainly localised in the nucleus but were partially translocated to the cytoplasm upon exposure of beta cells to cytokines and activation of the ERK pathway. Overproduction of AUF1 did not affect glucose-induced insulin secretion but promoted apoptosis. This effect was associated with a decrease in the production of the anti-apoptotic proteins, B cell leukaemia/lymphoma 2 (BCL2) and myeloid cell leukaemia sequence 1 (MCL1). Silencing of AUF1 isoforms restored the levels of the anti-apoptotic proteins, attenuated the activation of the nuclear factor-κB (NFκB) pathway, and protected the beta cells from cytokine-induced apoptosis.Our findings point to a contribution of AUF1 to the deleterious effects of cytokines on beta cell functions and suggest a role for this RNA-binding protein in the early phases of type 1 diabetes. | Western Blotting | 22159912
|
Differential effects of hnRNP D/AUF1 isoforms on HIV-1 gene expression. Lund, N; Milev, MP; Wong, R; Sanmuganantham, T; Woolaway, K; Chabot, B; Abou Elela, S; Mouland, AJ; Cochrane, A Nucleic acids research
40
3663-75
2011
Zobrazit abstrakt
Control of RNA processing plays a major role in HIV-1 gene expression. To explore the role of several hnRNP proteins in this process, we carried out a siRNA screen to examine the effect of depletion of hnRNPs A1, A2, D, H, I and K on HIV-1 gene expression. While loss of hnRNPs H, I or K had little effect, depletion of A1 and A2 increased expression of viral structural proteins. In contrast, reduced hnRNP D expression decreased synthesis of HIV-1 Gag and Env. Loss of hnRNP D induced no changes in viral RNA abundance but reduced the accumulation of HIV-1 unspliced and singly spliced RNAs in the cytoplasm. Subsequent analyses determined that hnRNP D underwent relocalization to the cytoplasm upon HIV-1 infection and was associated with Gag protein. Screening of the four isoforms of hnRNP D determined that, upon overexpression, they had differential effects on HIV-1 Gag expression, p45 and p42 isoforms increased viral Gag synthesis while p40 and p37 suppressed it. The differential effect of hnRNP D isoforms on HIV-1 expression suggests that their relative abundance could contribute to the permissiveness of cell types to replicate the virus, a hypothesis subsequently confirmed by selective depletion of p45 and p42. | Western Blotting | 22187150
|
FUBP3 interacts with FGF9 3' microsatellite and positively regulates FGF9 translation. Gau, BH; Chen, TM; Shih, YH; Sun, HS Nucleic acids research
39
3582-93
2010
Zobrazit abstrakt
A TG microsatellite in the 3'-untranslated region (UTR) of FGF9 mRNA has previously been shown to modulate FGF9 expression. In the present study, we investigate the possible interacting protein that binds to FGF9 3'-UTR UG-repeat and study the mechanism underlying this protein-RNA interaction. We first applied RNA pull-down assays and LC-MS analysis to identify proteins associated with this repetitive sequence. Among the identified proteins, FUBP3 specifically bound to the synthetic (UG)(15) oligoribonucleotide as shown by supershift in RNA-EMSA experiments. The endogenous FGF9 protein was upregulated in response to transient overexpression and downregulated after knockdown of FUBP3 in HEK293 cells. As the relative levels of FGF9 mRNA were similar in these two conditions, and the depletion of FUBP3 had no effect on the turn-over rate of FGF9 mRNA, these data suggested that FUBP3 regulates FGF9 expression at the post-transcriptional level. Further examination using ribosome complex pull-down assay showed overexpression of FUBP3 promotes FGF9 expression. In contrast, polyribosome-associated FGF9 mRNA decreased significantly in FUBP3-knockdown HEK293 cells. Finally, reporter assay suggested a synergistic effect of the (UG)-motif with FUBP3 to fine-tune the expression of FGF9. Altogether, results from this study showed the novel RNA-binding property of FUBP3 and the interaction between FUBP3 and FGF9 3'-UTR UG-repeat promoting FGF9 mRNA translation. | | 21252297
|
mRNA degradation plays a significant role in the program of gene expression regulated by phosphatidylinositol 3-kinase signaling. Graham, JR; Hendershott, MC; Terragni, J; Cooper, GM Molecular and cellular biology
30
5295-305
2009
Zobrazit abstrakt
Control of gene expression by the phosphatidylinositol (PI) 3-kinase/Akt pathway plays an important role in mammalian cell proliferation and survival, and numerous transcription factors and genes regulated by PI 3-kinase signaling have been identified. Because steady-state levels of mRNA are regulated by degradation as well as transcription, we have investigated the importance of mRNA degradation in controlling gene expression downstream of PI 3-kinase. We previously performed global expression analyses that identified a set of approximately 50 genes that were downregulated following inhibition of PI 3-kinase in proliferating T98G cells. By blocking transcription with actinomycin D, we found that almost 40% of these genes were regulated via effects of PI 3-kinase on mRNA stability. Analyses of β-globin-3' untranslated region (UTR) fusion transcripts indicated that sequences within 3' UTRs were the primary determinants of rapid mRNA decay. Small interfering RNA (siRNA) experiments further showed that knockdown of BRF1 or KSRP, both ARE binding proteins (ARE-BPs) regulated by Akt, stabilized the mRNAs of a majority of the downregulated genes but that knockdown of ARE-BPs that are not regulated by PI 3-kinase did not affect degradation of these mRNAs. These results show that PI 3-kinase regulation of mRNA stability, predominantly mediated by BRF1, plays a major role in regulating gene expression. Celý text článku | | 20855526
|
Autoimmune-associated PTPN22 R620W variation reduces phosphorylation of lymphoid phosphatase on an inhibitory tyrosine residue. Fiorillo E, Orru V, Stanford SM, Liu Y, Salek M, Rapini N, Schenone AD, Saccucci P, Delogu LG, Angelini F, Manca Bitti ML, Schmedt C, Chan AC, Acuto O, Bottini N J Biol Chem
2009
Zobrazit abstrakt
A missense C1858T single nucleotide polymorphism in the PTPN22 gene recently emerged as a major risk factor for human autoimmunity. PTPN22 encodes the lymphoid tyrosine phosphatase LYP, which forms a complex with the kinase Csk and is a critical negative regulator of signaling through the T cell receptor. The C1858T SNP results in the LYP-R620W variation within the LYP-Csk interaction motif. LYP-W620 exhibits a greatly reduced interaction with Csk and is a gain-of-function inhibitor of signaling. Here we show that LYP constitutively interacts with its substrate Lck in a Csk-dependent manner. TCR-induced phosphorylation of LYP by Lck on an inhibitory tyrosine residue releases tonic inhibition of signaling by LYP. The R620W variation disrupts the interaction between Lck and LYP, leading to reduced phosphorylation of LYP, which ultimately contributes to gain-of-function inhibition of T cell signaling. | | 20538612
|
Aldosterone and vasopressin affect {alpha}- and {gamma}-ENaC mRNA translation. Perlewitz, A; Nafz, B; Skalweit, A; Fähling, M; Persson, PB; Thiele, BJ Nucleic acids research
38
5746-60
2009
Zobrazit abstrakt
Vasopressin and aldosterone play key roles in the fine adjustment of sodium and water re-absorption in the nephron. The molecular target of this regulation is the epithelial sodium channel (ENaC) consisting of α-, β- and γ-subunits. We investigated mRNA-specific post-transcriptional mechanisms in hormone-dependent expression of ENaC subunits in mouse kidney cortical collecting duct cells. Transcription experiments and polysome gradient analysis demonstrate that both hormones act on transcription and translation. RNA-binding proteins (RBPs) and mRNA sequence motifs involved in translational control of γ-ENaC synthesis were studied. γ-ENaC-mRNA 3'-UTR contains an AU-rich element (ARE), which was shown by RNA affinity chromatography to interact with AU-rich element binding proteins (ARE-BP) like HuR, AUF1 and TTP. Some RBPs co-localized with γ-ENaC mRNA in polysomes in a hormone-dependent manner. Reporter gene co-expression experiments with luciferase γ-ENaC 3'-UTR constructs and ARE-BP expression plasmids demonstrate the importance of RNA-protein interaction for the up-regulation of γ-ENaC synthesis. We document that aldosterone and the V(2) receptor agonist dDAVP act on synthesis of α- and γ-ENaC subunits mediated by RBPs as effectors of translation but not by mRNA stabilization. Immunoprecipitation and UV-crosslinking analysis of γ-ENaC-mRNA/HuR complexes document the significance of γ-ENaC-mRNA-3'-UTR/HuR interaction for hormonal control of ENaC synthesis. Celý text článku | | 20453031
|
Multiple and specific mRNA processing targets for the major human hnRNP proteins. Venables, JP; Koh, CS; Froehlich, U; Lapointe, E; Couture, S; Inkel, L; Bramard, A; Paquet, ER; Watier, V; Durand, M; Lucier, JF; Gervais-Bird, J; Tremblay, K; Prinos, P; Klinck, R; Elela, SA; Chabot, B Molecular and cellular biology
28
6033-43
2008
Zobrazit abstrakt
Alternative splicing is a key mechanism regulating gene expression, and it is often used to produce antagonistic activities particularly in apoptotic genes. Heterogeneous nuclear ribonucleoparticle (hnRNP) proteins form a family of RNA-binding proteins that coat nascent pre-mRNAs. Many but not all major hnRNP proteins have been shown to participate in splicing control. The range and specificity of hnRNP protein action remain poorly documented, even for those affecting splice site selection. We used RNA interference and a reverse transcription-PCR screening platform to examine the implications of 14 of the major hnRNP proteins in the splicing of 56 alternative splicing events in apoptotic genes. Out of this total of 784 alternative splicing reactions tested in three human cell lines, 31 responded similarly to a knockdown in at least two different cell lines. On the other hand, the impact of other hnRNP knockdowns was cell line specific. The broadest effects were obtained with hnRNP K and C, two proteins whose role in alternative splicing had not previously been firmly established. Different hnRNP proteins affected distinct sets of targets with little overlap even between closely related hnRNP proteins. Overall, our study highlights the potential contribution of all of these major hnRNP proteins in alternative splicing control and shows that the targets for individual hnRNP proteins can vary in different cellular contexts. | | 18644864
|
Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Paschoud, S; Dogar, AM; Kuntz, C; Grisoni-Neupert, B; Richman, L; Kühn, LC Molecular and cellular biology
26
8228-41
2005
Zobrazit abstrakt
Interleukin-6 mRNA is unstable and degraded with a half-life of 30 min. Instability determinants can entirely be attributed to the 3' untranslated region. By grafting segments of this region to stable green fluorescent protein mRNA and subsequent scanning mutagenesis, we have identified two conserved elements, which together account for most of the instability. The first corresponds to a short noncanonical AU-rich element. The other, 80 nucleotides further 5', comprises a sequence predicted to form a stem-loop structure. Neither element alone was sufficient to confer full instability, suggesting that they might cooperate. Overexpression of myc-tagged AUF1 p37 and p42 isoforms as well as suppression of endogenous AUF1 by RNA interference stabilized interleukin-6 mRNA. Both effects required the AU-rich instability element. Similarly, the proteasome inhibitor MG132 stabilized interleukin-6 mRNA probably through an increase of AUF1 levels. The mRNA coimmunoprecipitated specifically with myc-tagged AUF1 p37 and p42 in cell extracts but only when the AU-rich instability element was present. These results indicate that AUF1 binds to the AU-rich element in vivo and promotes IL-6 mRNA degradation. Celý text článku | | 16954375
|