Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system. Galgano, Alessia, et al. PLoS ONE, 3: e3164 (2008)
2008
显示摘要
Genome-wide identification of mRNAs regulated by RNA-binding proteins is crucial to uncover post-transcriptional gene regulatory systems. The conserved PUF family RNA-binding proteins repress gene expression post-transcriptionally by binding to sequence elements in 3'-UTRs of mRNAs. Despite their well-studied implications for development and neurogenesis in metazoa, the mammalian PUF family members are only poorly characterized and mRNA targets are largely unknown. We have systematically identified the mRNAs associated with the two human PUF proteins, PUM1 and PUM2, by the recovery of endogenously formed ribonucleoprotein complexes and the analysis of associated RNAs with DNA microarrays. A largely overlapping set comprised of hundreds of mRNAs were reproducibly associated with the paralogous PUM proteins, many of them encoding functionally related proteins. A characteristic PUF-binding motif was highly enriched among PUM bound messages and validated with RNA pull-down experiments. Moreover, PUF motifs as well as surrounding sequences exhibit higher conservation in PUM bound messages as opposed to transcripts that were not found to be associated, suggesting that PUM function may be modulated by other factors that bind conserved elements. Strikingly, we found that PUF motifs are enriched around predicted miRNA binding sites and that high-confidence miRNA binding sites are significantly enriched in the 3'-UTRs of experimentally determined PUM1 and PUM2 targets, strongly suggesting an interaction of human PUM proteins with the miRNA regulatory system. Our work suggests extensive connections between the RBP and miRNA post-transcriptional regulatory systems and provides a framework for deciphering the molecular mechanism by which PUF proteins regulate their target mRNAs. | 18776931
|
Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules. Vessey, John P, et al. J. Neurosci., 26: 6496-508 (2006)
2006
显示摘要
Pumilio (Pum) protein acts as a translational inhibitor in several organisms including yeast, Drosophila, Xenopus, and mammals. Two Pumilio genes, Pum1 and Pum2, have been identified in mammals, but their function in neurons has not been identified. In this study, we found that Pum2 mRNA is expressed during neuronal development and that the protein is found in discrete particles in both the cell body and the dendritic compartment of fully polarized neurons. This finding indicates that Pum2 is a novel candidate of dendritically localized ribonucleoparticles (RNPs). During metabolic stress, Pum2 is present in stress granules (SGs), which are subsequently detected in the somatodendritic domain. It remains excluded from processing bodies under all conditions. When overexpressed in neurons and fibroblasts, Pum2 induces the formation of SGs that also contain T-cell intracellular antigen 1 (TIA-1)-related protein, eukaryotic initiation factor 4E, poly(A)-binding protein, TIA-1, and other RNA-binding proteins including Staufen1 and Barentsz. This induction of SGs is dependent on the RNA-binding domain and a glutamine-rich region in the N terminus of Pum2. This glutamine-rich region behaves in a similar manner as TIA-1 and prion protein, two molecules with known roles in protein aggregation. Pum2 downregulation in neurons via RNA interference (RNAi) interferes with the formation of SGs during metabolic stress. Cotransfection with an RNAi-resistant portion of the Pum2 mRNA restores SG formation. These results suggest a role for Pum2 in dendritic RNPs and SG formation in mammalian neurons. | 16775137
|
Human Pumilio-2 is expressed in embryonic stem cells and germ cells and interacts with DAZ (Deleted in AZoospermia) and DAZ-like proteins. Moore, Frederick L, et al. Proc. Natl. Acad. Sci. U.S.A., 100: 538-43 (2003)
2003
显示摘要
Early in development, a part of the embryo is set aside to become the germ cell lineage that will ultimately differentiate to form sperm and eggs and transmit genetic information to the next generation. Men with deletions encompassing the Y-chromosome DAZ genes have few or no germ cells but are otherwise healthy, indicating they harbor specific defects in formation or maintenance of germ cells. A DAZ homolog, DAZL (DAZ-Like), is found in diverse organisms, including humans and is required for germ cell development in males and/or females. We identified proteins that interact with DAZ proteins to better understand their function in human germ cells. Here, we show that PUM2, a human homolog of Pumilio, a protein required to maintain germ line stem cells in Drosophila and Caenorhabditis elegans, forms a stable complex with DAZ through the same functional domain required for RNA binding, protein-protein interactions and rescue of Pumilio mutations in flies. We also show that PUM2 is expressed predominantly in human embryonic stem cells and germ cells and colocalizes with DAZ and DAZL in germ cells. These data implicate PUM2 as a component of conserved cellular machinery that may be required for germ cell development. | 12511597
|