Genetic dissection of TAM receptor-ligand interaction in retinal pigment epithelial cell phagocytosis. Burstyn-Cohen, T; Lew, ED; Través, PG; Burrola, PG; Hash, JC; Lemke, G Neuron
76
1123-32
2012
显示摘要
Although TAM receptor tyrosine kinases play key roles in immune regulation, cancer metastasis, and viral infection, the relative importance of the two TAM ligands-Gas6 and Protein S-has yet to be resolved in any setting in vivo. We have now performed a genetic dissection of ligand function in the retina, where the TAM receptor Mer is required for the circadian phagocytosis of photoreceptor outer segments by retinal pigment epithelial cells. This process is severely attenuated in Mer mutant mice, which leads to photoreceptor death. We find that retinal deletion of either Gas6 or Protein S alone yields retinae with a normal number of photoreceptors. However, concerted deletion of both ligands fully reproduces the photoreceptor death seen in Mer mutants. These results demonstrate that Protein S and Gas6 function as independent, bona fide Mer ligands, and are, to a first approximation, interchangeable with respect to Mer-driven phagocytosis in the retina. | | 23259948
|
Lack of protein S in mice causes embryonic lethal coagulopathy and vascular dysgenesis. Burstyn-Cohen, T; Heeb, MJ; Lemke, G The Journal of clinical investigation
119
2942-53
2009
显示摘要
Protein S (ProS) is a blood anticoagulant encoded by the Pros1 gene, and ProS deficiencies are associated with venous thrombosis, stroke, and autoimmunity. These associations notwithstanding, the relative risk that reduced ProS expression confers in different disease settings has been difficult to assess without an animal model. We have now described a mouse model of ProS deficiency and shown that all Pros1-/- mice die in utero,from a fulminant coagulopathy and associated hemorrhages. Although ProS is known to act as a cofactor for activated Protein C (aPC), plasma from Pros1+/- heterozygous mice exhibited accelerated thrombin generation independent of aPC, and Pros1 mutants displayed defects in vessel development and function not seen in mice lacking protein C. Similar vascular defects appeared in mice in which Pros1 was conditionally deleted in vascular smooth muscle cells. Mutants in which Pros1 was deleted specifically in hepatocytes, which are thought to be the major source of ProS in the blood, were viable as adults and displayed less-severe coagulopathy without vascular dysgenesis. Finally, analysis of mutants in which Pros1 was deleted in endothelial cells indicated that these cells make a substantial contribution to circulating ProS. These results demonstrate that ProS is a pleiotropic anticoagulant with aPC-independent activities and highlight new roles for ProS in vascular development and homeostasis. | Western Blotting | 19729839
|