SWI/SNF complexes are required for full activation of the DNA-damage response. Smith-Roe, SL; Nakamura, J; Holley, D; Chastain, PD; Rosson, GB; Simpson, DA; Ridpath, JR; Kaufman, DG; Kaufmann, WK; Bultman, SJ Oncotarget
6
732-45
2015
显示摘要
SWI/SNF complexes utilize BRG1 (also known as SMARCA4) or BRM (also known as SMARCA2) as alternative catalytic subunits with ATPase activity to remodel chromatin. These chromatin-remodeling complexes are required for mammalian development and are mutated in ~20% of all human primary tumors. Yet our knowledge of their tumor-suppressor mechanism is limited. To investigate the role of SWI/SNF complexes in the DNA-damage response (DDR), we used shRNAs to deplete BRG1 and BRM and then exposed these cells to a panel of 6 genotoxic agents. Compared to controls, the shRNA knockdown cells were hypersensitive to certain genotoxic agents that cause double-strand breaks (DSBs) associated with stalled/collapsed replication forks but not to ionizing radiation-induced DSBs that arise independently of DNA replication. These findings were supported by our analysis of DDR kinases, which demonstrated a more prominent role for SWI/SNF in the activation of the ATR-Chk1 pathway than the ATM-Chk2 pathway. Surprisingly, γH2AX induction was attenuated in shRNA knockdown cells exposed to a topoisomerase II inhibitor (etoposide) but not to other genotoxic agents including IR. However, this finding is compatible with recent studies linking SWI/SNF with TOP2A and TOP2BP1. Depletion of BRG1 and BRM did not result in genomic instability in a tumor-derived cell line but did result in nucleoplasmic bridges in normal human fibroblasts. Taken together, these results suggest that SWI/SNF tumor-suppressor activity involves a role in the DDR to attenuate replicative stress and genomic instability. These results may also help to inform the selection of chemotherapeutics for tumors deficient for SWI/SNF function. | Western Blotting | 25544751
|
DNA Damage Signaling Is Induced in the Absence of Epstein-Barr Virus (EBV) Lytic DNA Replication and in Response to Expression of ZEBRA. Wang'ondu, R; Teal, S; Park, R; Heston, L; Delecluse, H; Miller, G PloS one
10
e0126088
2015
显示摘要
Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression. | | 25950714
|
A kinome-targeted RNAi-based screen links FGF signaling to H2AX phosphorylation in response to radiation. Benzina, S; Pitaval, A; Lemercier, C; Lustremant, C; Frouin, V; Wu, N; Papine, A; Soussaline, F; Romeo, PH; Gidrol, X Cellular and molecular life sciences : CMLS
72
3559-73
2015
显示摘要
A general radioprotective effect by fibroblast growth factor (FGF) has been extensively described since the early 1990s; however, the molecular mechanisms involved remain largely unknown. Radiation-induced DNA double-strand breaks (DSBs) lead to a complex set of responses in eukaryotic cells. One of the earliest consequences is phosphorylation of histone H2AX to form nuclear foci of the phosphorylated form of H2AX (γH2AX) in the chromatin adjacent to sites of DSBs and to initiate the recruitment of DNA-repair molecules. Upon a DSB event, a rapid signaling network is activated to coordinate DNA repair with the induction of cell-cycle checkpoints. To date, three kinases (ATM, ATR, and DNA-PK) have been shown to phosphorylate histone H2AX in response to irradiation. Here, we report a kinome-targeted small interfering RNA (siRNA) screen to characterize human kinases involved in H2AX phosphorylation. By analyzing γH2AX foci at a single-nucleus level, we identified 46 kinases involved either directly or indirectly in H2AX phosphorylation in response to irradiation in human keratinocytes. Furthermore, we demonstrate that in response to irradiation, the FGFR4 signaling cascade promotes JNK1 activation and direct H2AX phosphorylation leading, in turn, to more efficient DNA repair. This can explain, at least partially, the radioprotective effect of FGF. | | 25894690
|
Critical role of lysine 134 methylation on histone H2AX for γ-H2AX production and DNA repair. Sone, K; Piao, L; Nakakido, M; Ueda, K; Jenuwein, T; Nakamura, Y; Hamamoto, R Nature communications
5
5691
2014
显示摘要
The presence of phosphorylated histone H2AX (γ-H2AX) is associated with the local activation of DNA-damage repair pathways. Although γ-H2AX deregulation in cancer has previously been reported, the molecular mechanism involved and its relationship with other histone modifications remain largely unknown. Here we find that the histone methyltransferase SUV39H2 methylates histone H2AX on lysine 134. When H2AX was mutated to abolish K134 methylation, the level of γ-H2AX became significantly reduced. We also found lower γ-H2AX activity following the introduction of double-strand breaks in Suv39h2 knockout cells or on SUV39H2 knockdown. Tissue microarray analyses of clinical lung and bladder tissues also revealed a positive correlation between H2AX K134 methylation and γ-H2AX levels. Furthermore, introduction of K134-substituted histone H2AX enhanced radio- and chemosensitivity of cancer cells. Overall, our results suggest that H2AX methylation plays a role in the regulation of γ-H2AX abundance in cancer. | Western Blotting, Immunohistochemistry, Immunocytochemistry | 25487737
|
Telomerase inhibitor Imetelstat (GRN163L) limits the lifespan of human pancreatic cancer cells. Burchett, KM; Yan, Y; Ouellette, MM PloS one
9
e85155
2014
显示摘要
Telomerase is required for the unlimited lifespan of cancer cells. The vast majority of pancreatic adenocarcinomas overexpress telomerase activity and blocking telomerase could limit their lifespan. GRN163L (Imetelstat) is a lipid-conjugated N3'→P5' thio-phosphoramidate oligonucleotide that blocks the template region of telomerase. The aim of this study was to define the effects of long-term GRN163L exposure on the maintenance of telomeres and lifespan of pancreatic cancer cells. Telomere size, telomerase activity, and telomerase inhibition response to GRN163L were measured in a panel of 10 pancreatic cancer cell lines. The cell lines exhibited large differences in levels of telomerase activity (46-fold variation), but most lines had very short telomeres (2-3 kb in size). GRN163L inhibited telomerase in all 10 pancreatic cancer cell lines, with IC50 ranging from 50 nM to 200 nM. Continuous GRN163L exposure of CAPAN1 (IC50 = 75 nM) and CD18 cells (IC50 = 204 nM) resulted in an initial rapid shortening of the telomeres followed by the maintenance of extremely short but stable telomeres. Continuous exposure to the drug eventually led to crisis and to a complete loss of viability after 47 (CAPAN1) and 69 (CD18) doublings. Crisis In these cells was accompanied by activation of a DNA damage response (γ-H2AX) and evidence of both senescence (SA-β-galactosidase activity) and apoptosis (sub-G1 DNA content, PARP cleavage). Removal of the drug after long-term GRN163L exposure led to a reactivation of telomerase and re-elongation of telomeres in the third week of cultivation without GRN163L. These findings show that the lifespan of pancreatic cancer cells can be limited by continuous telomerase inhibition. These results should facilitate the design of future clinical trials of GRN163L in patients with pancreatic cancer. | | 24409321
|
An RNF168 fragment defective for focal accumulation at DNA damage is proficient for inhibition of homologous recombination in BRCA1 deficient cells. Muñoz, MC; Yanez, DA; Stark, JM Nucleic acids research
42
7720-33
2014
显示摘要
The E3 ubiquitin ligase RNF168 is a DNA damage response (DDR) factor that promotes monoubiquitination of H2A/H2AX at K13/15, facilitates recruitment of other DDR factors (e.g. 53BP1) to DNA damage, and inhibits homologous recombination (HR) in cells deficient in the tumor suppressor BRCA1. We have examined the domains of RNF168 important for these DDR events, including chromosomal HR that is induced by several nucleases (I-SceI, CAS9-WT and CAS9-D10A), since the inducing nuclease affects the relative frequency of distinct repair outcomes. We found that an N-terminal fragment of RNF168 (1-220/N221*) efficiently inhibits HR induced by each of these nucleases in BRCA1 depleted cells, and promotes recruitment of 53BP1 to DNA damage and H2AX monoubiquitination at K13/15. Each of these DDR events requires a charged residue in RNF168 (R57). Notably, RNF168-N221* fails to self-accumulate into ionizing radiation induced foci (IRIF). Furthermore, expression of RNF168 WT and N221* can significantly bypass the role of another E3 ubiquitin ligase, RNF8, for inhibition of HR in BRCA1 depleted cells, and for promotion of 53BP1 IRIF. We suggest that the ability for RNF168 to promote H2A/H2AX monoubiquitination and 53BP1 IRIF, but not RNF168 self-accumulation into IRIF, is important for inhibition of HR in BRCA1 deficient cells. | Western Blotting | 24829461
|
Selective inhibition of p300 HAT blocks cell cycle progression, induces cellular senescence, and inhibits the DNA damage response in melanoma cells. Yan, G; Eller, MS; Elm, C; Larocca, CA; Ryu, B; Panova, IP; Dancy, BM; Bowers, EM; Meyers, D; Lareau, L; Cole, PA; Taverna, SD; Alani, RM The Journal of investigative dermatology
133
2444-52
2013
显示摘要
Epigenetic events, including covalent post-translational modifications of histones, have been demonstrated to have critical roles in tumor development and progression. The transcriptional coactivator p300/CBP possesses both histone acetyltransferase (HAT) activity and scaffolding properties that directly influence the transcriptional activation of targeted genes. We have used a potent and specific inhibitor of p300/CBP HAT activity, C646, in order to evaluate the functional contributions of p300/CBP HAT to tumor development and progression. Here we report that C646 inhibits the growth of human melanoma and other tumor cells and promotes cellular senescence. Global assessment of the p300 HAT transcriptome in human melanoma identified functional roles in promoting cell cycle progression, chromatin assembly, and activation of DNA repair pathways through direct transcriptional regulatory mechanisms. In addition, C646 is shown to promote sensitivity to DNA damaging agents, leading to the enhanced apoptosis of melanoma cells after combination treatment with cisplatin. Together, our data suggest that p300 HAT activity mediates critical growth regulatory pathways in tumor cells and may serve as a potential therapeutic target for melanoma and other malignancies by promoting cellular responses to DNA damaging agents that are currently ineffective against specific cancers. | | 23698071
|
Mouse tissues that undergo neoplastic progression after K-Ras activation are distinguished by nuclear translocation of phospho-Erk1/2 and robust tumor suppressor responses. Parikh, N; Shuck, RL; Nguyen, TA; Herron, A; Donehower, LA Molecular cancer research : MCR
10
845-55
2012
显示摘要
Mutation of K-Ras is a frequent oncogenic event in human cancers, particularly cancers of lungs, pancreas, and colon. It remains unclear why some tissues are more susceptible to Ras-induced transformation than others. Here, we globally activated a mutant oncogenic K-Ras allele (K-Ras(G12D)) in mice and examined the tissue-specific effects of this activation on cancer pathobiology, Ras signaling, tumor suppressor, DNA damage, and inflammatory responses. Within 5 to 6 weeks of oncogenic Ras activation, mice develop oral and gastric papillomas, lung adenomas, and hematopoietic hyperproliferation and turn moribund. The oral, gastric, and lung premalignant lesions display activated extracellular signal-regulated kinases (Erk)1/2 and NF-κB signaling as well as activated tumor suppressor and DNA damage responses. Other organs such as pancreas, liver, and small intestine do not exhibit neoplastic progression within 6 weeks following K-Ras(G12D) activation and do not show a potent tumor suppressor response. Even though robust Erk1/2 signaling is activated in all the tissues examined, the pErk1/2 distribution remains largely cytoplasmic in K-Ras(G12D)-refractory tissues (pancreas, liver, and intestines) as opposed to a predominantly nuclear localization in K-Ras(G12D)-induced neoplasms of lung, oral, and gastric mucosa. The downstream targets of Ras signaling, pElk-1 and c-Myc, are elevated in K-Ras(G12D)-induced neoplastic lesions but not in K-Ras(G12D)-refractory tissues. We propose that oncogenic K-Ras-refractory tissues delay oncogenic progression by spatially limiting the efficacy of Ras/Raf/Erk1/2 signaling, whereas K-Ras-responsive tissues exhibit activated Ras/Raf/Erk1/2 signaling, rapidly form premalignant tumors, and activate potent antitumor responses that effectively prevent further malignant progression. | Immunohistochemistry | 22532587
|
Histone lysine methyltransferase SETD8 promotes carcinogenesis by deregulating PCNA expression. Takawa, M; Cho, HS; Hayami, S; Toyokawa, G; Kogure, M; Yamane, Y; Iwai, Y; Maejima, K; Ueda, K; Masuda, A; Dohmae, N; Field, HI; Tsunoda, T; Kobayashi, T; Akasu, T; Sugiyama, M; Ohnuma, S; Atomi, Y; Ponder, BA; Nakamura, Y; Hamamoto, R Cancer research
72
3217-27
2012
显示摘要
Although the physiologic significance of lysine methylation of histones is well known, whether lysine methylation plays a role in the regulation of nonhistone proteins has not yet been examined. The histone lysine methyltransferase SETD8 is overexpressed in various types of cancer and seems to play a crucial role in S-phase progression. Here, we show that SETD8 regulates the function of proliferating cell nuclear antigen (PCNA) protein through lysine methylation. We found that SETD8 methylated PCNA on lysine 248, and either depletion of SETD8 or substitution of lysine 248 destabilized PCNA expression. Mechanistically, lysine methylation significantly enhanced the interaction between PCNA and the flap endonuclease FEN1. Loss of PCNA methylation retarded the maturation of Okazaki fragments, slowed DNA replication, and induced DNA damage, and cells expressing a methylation-inactive PCNA mutant were more susceptible to DNA damage. An increase of methylated PCNA was found in cancer cells, and the expression levels of SETD8 and PCNA were correlated in cancer tissue samples. Together, our findings reveal a function for lysine methylation on a nonhistone protein and suggest that aberrant lysine methylation of PCNA may play a role in human carcinogenesis. | Western Blotting | 22556262
|
Synthetic lethality of PARP inhibition in BRCA-network disrupted tumor cells is associated with interferon pathway activation and enhanced by interferon-γ. Paul Warrener,Sammy Kim,Sybil M G Williams,Matthew Biery,Marcia Gordon,Carlo Toniatti,Michele A Cleary,Peter S Linsley,Michael Carleton Apoptosis : an international journal on programmed cell death
17
2012
显示摘要
Tumor suppressor genes BRCA1 and BRCA2 function in a complex gene network that regulates homologous recombination and DNA double-strand break repair. Disruption of the BRCA-network through gene mutation, deletion, or RNAi-mediated silencing can sensitize cells to small molecule inhibitors of poly (ADP-ribose) polymerase (PARPi). Here, we demonstrate that BRCA-network disruption in the presence of PARPi leads to the selective induction and enhancement of interferon pathway and apoptotic gene expression in cultured tumor cells. In addition, we report PARPi cytotoxicity in BRCA1-deficient tumor cells is enhanced >10-fold when combined with interferon-γ. These findings establish a link between synthetic lethality of PARPi in BRCA-network disrupted cells and interferon pathway activation triggered by genetic instability. | | 22392482
|