Millipore Sigma Vibrant Logo
 

cell+cycle


1034 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (950)
  • (5)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Role of histone modifications in marking and activating genes through mitosis. 16199528

    The global inhibition of transcription at the mitotic phase of the cell cycle occurs together with the general displacement of transcription factors from the mitotic chromatin. Nevertheless, the DNase- and potassium permanganate-hypersensitive sites are maintained on potentially active promoters during mitosis, helping to mark active genes at this stage of the cell cycle. Our study focuses on the role of histone acetylation and H3 (Lys-4) methylation in the maintenance of the competency of these active genes during mitosis. To this end we have analyzed histone modifications across the promoters and coding regions of constitutively active, inducible, and inactive genes in mitotic arrested cells. Our results show that basal histone modifications are maintained during mitosis at promoters and coding regions of the active and inducible RNA polymerase II-transcribed genes. In addition we have demonstrated that, together with H3 acetylation and H3 (Lys-4) methylation, H4 (Lys-12) acetylation at the coding regions contributes to the formation of a stable mark on active genes at this stage of the cell cycle. Finally, analysis of cyclin B1 gene activation during mitosis revealed that the former occurs with a strong increase of H3 (Lys-4) trimethylation but not H3 or H4 acetylation, suggesting that histone methyltransferases are active during this stage. These data demonstrate a critical role of histone acetylation and H3 (Lys-4) methylation during mitosis in marking and activating genes during the mitotic stage of the cell cycle.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibito ... 9099745

    Estrogens induce cell proliferation in target tissues by stimulating progression through G1 phase of the cell cycle, but the underlying molecular targets remain undefined. To determine the role of the cyclin/cyclin-dependent kinase (CDK)/retinoblastoma protein (pRB) pathway in this response we treated MCF-7 breast cancer cells with the pure estrogen antagonist ICI 182780 to inhibit estrogen-induced gene expression and induce G1 phase arrest. Subsequent treatment with 17beta-estradiol resulted in the synchronous entry of cells into S phase commencing at 12 h. The proportion of cells in S phase reached a maximum of 60% at 21-24 h. Cells subsequently completed mitosis and entered a second semisynchronous round of replication. Entry into S phase was preceded by increased activity of both Cdk4 and cyclin E-Cdk2 and hyperphosphorylation of pRB, all within the first 3-6 h of estradiol treatment. The increase in Cdk4 activity was accompanied by increases in cyclin D1 mRNA and protein, indicating that an initiating event in the activation of Cdk4 was increased cyclin D1 gene expression. In contrast, the levels of Cdk2 and the CDK inhibitors p21 (WAF1/CIP1/SDI1) and p27 (KIP1) in total cell lysates and in cyclin E immunoprecipitates were unaltered at these early time points. However, an inhibitory activity was present in antiestrogen-pretreated cell lysates toward recombinant cyclin E-Cdk2 and was relieved by estradiol treatment. This activity was attributable predominantly to p21. These apparently conflicting data were resolved by performing gel filtration chromatography, which revealed that only a minority of cyclin E-Cdk2 complexes were active following estradiol treatment. Active complexes eluted at a higher molecular weight than inactive complexes, were relatively deficient in both p21 and p27, and contained Cdk2 with increased threonine 160 phosphorylation, consistent with a mechanism of activation of cyclin E-Cdk2 involving both reduced CDK inhibitor association and CDK-activating kinase-mediated phosphorylation of Cdk2. These results provide an explanation for the early activation of both cyclin D1-Cdk4 and cyclin E-Cdk2 complexes that accompany G1-S phase progression in response to estradiol.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-687
    Nombre del producto:
    Anti-Cyclin E Antibody
  • Abundance and subcellular localisation of cyclin D3 in human tumours. 8575852

    The D-type cyclins are positive regulators of the G1 phase of the mammalian cell cycle. Cyclins D1 or D2 are over-expressed in several types of cancer, transform rodent cells in culture and therefore harbor hallmarks of cellular proto-oncogenes. In contrast, no data on expression of cyclin D3 in tissues and tumours are presently available. We have raised monoclonal antibodies (MAbs) specific for cyclin D3 and examined abundance and subcellular localisation of this G1 cyclin in a series of human cultured cell types and in 180 primary tumours of diverse histogenesis. Cyclin D3 localised predominantly in nuclei of normal and tumour cells both in culture and in situ, and a pronounced cell-to-cell variation of its abundance was reminiscent of cyclins D1 and D2. Immunohistochemical analysis of tumour and corresponding normal tissues showed strong aberrant accumulation of cyclin D3 in a subset (about 10%) of breast carcinomas, whereas only weak-to-moderate expression was found in colorectal, head and neck and uterine carcinomas, melanomas and soft tissue sarcomas. The specificity of the immunohistochemical data was confirmed by immunoblotting analysis of tissue and tumour lysates. Our results indicate that over-abundance of cyclin D3 is considerably less frequent than that of cyclin D1, yet we identify subsets of breast tumours, and potentially lymphomas, as candidate tumour types with elevated cyclin D3 expression.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. 16055060

    We have investigated the cell cycle-related mechanisms that lead to the emergence of primate areas 17 and 18. These areas are characterized by striking differences in cytoarchitectonics and neuron number. We show in vivo that (1) area 17 precursors of supragranular neurons exhibit a shorter cell cycle duration, a reduced G1 phase, and a higher rate of cell cycle reentry than area 18 precursors; (2) area 17 and area 18 precursors show contrasting and specific levels of expression of cyclin E (high in area 17, low in area 18) and p27Kip1 (low in area 17, high in area 18); (3) ex vivo up- and downmodulation of cyclin E and p27Kip1 show that both regulators influence cell cycle kinetics by modifying rates of cell cycle progression and cell cycle reentry; (4) modeling the areal differences in cell cycle parameters suggests that they contribute to areal differences in numbers of precursors and neuron production.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-145
    Nombre del producto:
    Anti-phospho-Histone H3 (Ser28) Antibody
  • LINC00037 Inhibits Proliferation of Renal Cell Carcinoma Cells in an Epidermal Growth Factor Receptor-Dependent Way. 29393141

    LINC00037 has previously been reported to be up-regulated in clear cell renal cell carcinoma (ccRCC), however, the underlying mechanism remained unknown. In this study, we designed to investigate the functional role of LINC00037 in ccRCC Methods: LINC00037 knockdown and re-expressing 786-O and A498 cells were established. CCK8 assay and EdU assay were performed to evaluate the proliferation rates of ccRCC cells. Flow cytometry assay was performed to detect the cell apoptosis and cell cycle. Subcutaneous injection xenotransplantation mouse model was used to observe the role of LINC00037 in tumor growth in vivo. Mass spectrometry (MS) was performed to find the interacting partner of LINC00037 and RNA immunoprecipitation (RIP) was carried out to validate their interaction.We found that knockdown of LINC00037 resulted in inhibited cell proliferation with activated apoptosis and cell cycle arrest in vitro. Over-expression of LINC00037 in LINC00037 knockdown cells restored and enhanced cell proliferation. In vivo mouse model indicated reduced tumor progression by LINC00037 depletion and promoted tumor progression by LINC00037 overexpression. LINC00037 could bind to epidermal growth factor receptor (EGFR) and increase the protein level of EGFR.LINC00037 could inhibit proliferation of ccRCC in an epidermal growth factor receptor-dependent way.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-700
    Nombre del producto:
    Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit
  • Degradation of cyclin D3 independent of Thr-283 phosphorylation. 16331257

    Cyclin D3 has been shown to play a major role in the regulation of cell cycle progression in lymphocytes. It is therefore important to understand the mechanisms involved in the regulation of this protein. We have previously shown that both basal and cAMP-induced degradation of cyclin D3 in Reh cells is dependent on Thr-283 phosphorylation by glycogen synthase kinase-3beta (GSK-3beta). We now provide evidence of an alternative mechanism being involved in the regulation of cyclin D3 degradation. Treatment of lymphoid cells with okadaic acid (OA), an inhibitor of protein phosphatases 1 and 2A (PP1 and PP2A), induces rapid phosphorylation and proteasomal degradation of cyclin D3. This degradation is not inhibited by the GSK-3beta inhibitors lithium or Kenpaullone, or by substitution of Thr-283 with Ala on cyclin D3, indicating that cyclin D3 can be degraded independently of Thr-283 phosphorylation and GSK-3beta activity. Interestingly, in vitro experiments revealed that PP1, but not PP2A, was able to dephosphorylate cyclin D3 efficiently, and PP1 was found to associate with His-tagged cyclin D3. These results support the hypothesis that PP1 constitutively keeps cyclin D3 in a stable, dephosphorylated state, and that treatment of cells with OA leads to phosphorylation and degradation of cyclin D3 through inhibition of PP1.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-221
  • R-Roscovitine (Seliciclib) prevents DNA damage-induced cyclin A1 upregulation and hinders non-homologous end-joining (NHEJ) DNA repair. 20684776

    CDK-inhibitors can diminish transcriptional levels of cell cycle-related cyclins through the inhibition of E2F family members and CDK7 and 9. Cyclin A1, an E2F-independent cyclin, is strongly upregulated under genotoxic conditions and functionally was shown to increase NHEJ activity. Cyclin A1 outcompetes with cyclin A2 for CDK2 binding, possibly redirecting its activity towards DNA repair. To see if we could therapeutically block this switch, we analyzed the effects of the CDK-inhibitor R-Roscovitine on the expression levels of cyclin A1 under genotoxic stress and observed subsequent DNA damage and repair mechanisms.We found that R-Roscovitine alone was unable to alter cyclin A1 transcriptional levels, however it was able to reduce protein expression through a proteosome-dependent mechanism. When combined with DNA damaging agents, R-Roscovitine was able to prevent the DNA damage-induced upregulation of cyclin A1 on a transcriptional and post-transcriptional level. This, moreover resulted in a significant decrease in non-homologous end-joining (NHEJ) paired with an increase in DNA DSBs and overall DNA damage over time. Furthermore, microarray analysis demonstrated that R-Roscovitine affected DNA repair mechanisms in a more global fashion.Our data reveal a new mechanism of action for R-Roscovitine on DNA repair through the inhibition of the molecular switch between cyclin A family members under genotoxic conditions resulting in reduced NHEJ capability.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-636
    Nombre del producto:
    Anti-phospho-Histone H2A.X (Ser139) Antibody, clone JBW301
  • Mammalian E-type cyclins control chromosome pairing, telomere stability and CDK2 localization in male meiosis. 24586195

    Loss of function of cyclin E1 or E2, important regulators of the mitotic cell cycle, yields viable mice, but E2-deficient males display reduced fertility. To elucidate the role of E-type cyclins during spermatogenesis, we characterized their expression patterns and produced additional deletions of Ccne1 and Ccne2 alleles in the germline, revealing unexpected meiotic functions. While Ccne2 mRNA and protein are abundantly expressed in spermatocytes, Ccne1 mRNA is present but its protein is detected only at low levels. However, abundant levels of cyclin E1 protein are detected in spermatocytes deficient in cyclin E2 protein. Additional depletion of E-type cyclins in the germline resulted in increasingly enhanced spermatogenic abnormalities and corresponding decreased fertility and loss of germ cells by apoptosis. Profound meiotic defects were observed in spermatocytes, including abnormal pairing and synapsis of homologous chromosomes, heterologous chromosome associations, unrepaired double-strand DNA breaks, disruptions in telomeric structure and defects in cyclin-dependent-kinase 2 localization. These results highlight a new role for E-type cyclins as important regulators of male meiosis.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. 11511535

    Myc oncoproteins promote cell cycle progression in part through the transcriptional up-regulation of the cyclin D2 gene. We now show that Myc is bound to the cyclin D2 promoter in vivo. Binding of Myc induces cyclin D2 expression and histone acetylation at a single nucleosome in a MycBoxII/TRRAP-dependent manner. Down-regulation of cyclin D2 mRNA expression in differentiating HL60 cells is preceded by a switch of promoter occupancy from Myc/Max to Mad/Max complexes, loss of TRRAP binding, increased HDAC1 binding, and histone deacetylation. Thus, recruitment of TRRAP and regulation of histone acetylation are critical for transcriptional activation by Myc.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Splicing of histone deacetylase 7 modulates smooth muscle cell proliferation and neointima formation through nuclear β-catenin translocation. 21836063

    Vascular smooth muscle cell (SMC) proliferation has an indispensable role in the pathogenesis of vascular disease, but the mechanism is not fully elucidated. The epigenetic enzyme histone deacetylase 7 (HDAC7) is involved in endothelial homeostasis and SMC differentiation and could have a role in SMC proliferation. In this study, we sought to examine the effect of 2 HDAC7 isoforms on SMC proliferation and neointima formation.We demonstrated that overexpression of unspliced HDAC7 (HDAC7u) could suppress SMC proliferation through downregulation of cyclin D1 and cell cycle arrest, whereas spliced HDAC7 (HDAC7s) could not. Small interfering RNA (siRNA)-mediated knockdown of HDAC7 increased SMC proliferation and induced nuclear translocation of β-catenin. Additional experiments showed that only HDAC7u could bind to β-catenin and retain it in the cytoplasm. Reporter gene assay and reverse transcription polymerase chain reaction revealed a reduction of β-catenin activity in cells overexpressing HDAC7u but not HDAC7s. Deletion studies indicated that the C-terminal region of HDAC7u is responsible for the interaction with β-catenin. However, the addition of amino acids to the N terminus of HDAC7u disrupted the binding, further strengthening our hypothesis that HDAC7s does not interact with β-catenin. The growth factor platelet-derived growth factor-BB increased the splicing of HDAC7 while simultaneously decreasing the expression of HDAC7u. Importantly, in an animal model of femoral artery wire injury, we demonstrated that knockdown of HDAC7 by siRNA aggravates neointima formation in comparison with control siRNA.Our findings demonstrate that splicing of HDAC7 modulates SMC proliferation and neointima formation through β-catenin nuclear translocation, which provides a potential therapeutic target in vascular disease.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo