Epigenetics of Notch1 regulation in pulmonary microvascular rarefaction following extrauterine growth restriction. Tang, LL; Zhang, LY; Lao, LJ; Hu, QY; Gu, WZ; Fu, LC; Du, LZ Respiratory research
16
66
2015
Mostrar resumen
Extrauterine growth restriction (EUGR) plays an important role in the developmental origin of adult cardiovascular diseases. In an EUGR rat model, we reported an elevated pulmonary arterial pressure in adults and genome-wide epigenetic modifications in pulmonary vascular endothelial cells (PVECs). However, the underlying mechanism of the early nutritional insult that results in pulmonary vascular consequences later in life remains unclear.A rat model was used to investigate the physiological and structural effect of EUGR on early pulmonary vasculature by evaluating right ventricular systolic pressure and pulmonary vascular density in male rats. Epigenetic modifications of the Notch1 gene in PVECs were evaluated.EUGR decreased pulmonary vascular density with no significant impact on right ventricular systolic pressure at 3 weeks. Decreased transcription of Notch1 was observed both at 3 and 9 weeks, in association with decreased downstream target gene, Hes-1. Chromatin immunoprecipitation and bisulfite sequencing were performed to analyze the epigenetic modifications of the Notch1 gene promoter in PVECs. EUGR caused a significantly increased H3K27me3 in the proximal Notch1 gene promoter, and increased methylation of single CpG sites in the distal Notch1 gene promoter, both at 3 and 9 weeks.We conclude that EUGR results in decreased pulmonary vascular growth in association with decreased Notch1 in PVECs. This may be mediated by increased CpG methylation and H3K27me3 in the Notch1 gene promoter region. | | | 26040933
![26040933](/INTERSHOP/static/WFS/Merck-CL-Site/-/-/es_ES/images/outbound-arrow.png) |
Class I histone deacetylase inhibitors inhibit the retention of BRCA1 and 53BP1 at the site of DNA damage. Fukuda, T; Wu, W; Okada, M; Maeda, I; Kojima, Y; Hayami, R; Miyoshi, Y; Tsugawa, K; Ohta, T Cancer science
106
1050-6
2015
Mostrar resumen
BRCA1 and 53BP1 antagonistically regulate homology-directed repair (HDR) and non-homologous end-joining (NHEJ) of DNA double-strand breaks (DSB). The histone deacetylase (HDAC) inhibitor trichostatin A directly inhibits the retention of 53BP1 at DSB sites by acetylating histone H4 (H4ac), which interferes with 53BP1 binding to dimethylated histone H4 Lys20 (H4K20me2). Conversely, we recently found that the retention of the BRCA1/BARD1 complex is also affected by another methylated histone residue, H3K9me2, which can be suppressed by the histone lysine methyltransferase (HKMT) inhibitor UNC0638. Here, we investigate the effects of the class I HDAC inhibitors MS-275 and FK228 compared to UNC0638 on histone modifications and the DNA damage response. In addition to H4ac, the HDAC inhibitors induce H3K9ac and inhibit H3K9me2 at doses that do not affect the expression levels of DNA repair genes. By contrast, UNC0638 selectively inhibits H3K9me2 without affecting the levels of H3K9ac, H3K56ac or H4ac. Reflecting their effects on histone modifications, the HDAC inhibitors inhibit ionizing radiation-induced foci (IRIF) formation of BRCA1 and BARD1 as well as 53BP1 and RIF1, whereas UNC0638 suppresses IRIF formation of BRCA1 and BARD1 but not 53BP1 and RIF1. Although HDAC inhibitors suppressed HDR, they did not cooperate with the poly(ADP-ribose) polymerase inhibitor olaparib to block cancer cell growth, possibly due to simultaneous suppression of NHEJ pathway components. Collectively, these results suggest the mechanism by that HDAC inhibitors inhibit both the HDR and NHEJ pathways, whereas HKMT inhibitor inhibits only the HDR pathway; this finding may affect the chemosensitizing effects of the inhibitors. | | | 26053117
![26053117](/INTERSHOP/static/WFS/Merck-CL-Site/-/-/es_ES/images/outbound-arrow.png) |
SCARECROW-LIKE15 interacts with HISTONE DEACETYLASE19 and is essential for repressing the seed maturation programme. Gao, MJ; Li, X; Huang, J; Gropp, GM; Gjetvaj, B; Lindsay, DL; Wei, S; Coutu, C; Chen, Z; Wan, XC; Hannoufa, A; Lydiate, DJ; Gruber, MY; Chen, ZJ; Hegedus, DD Nature communications
6
7243
2015
Mostrar resumen
Epigenetic regulation of gene expression is critical for controlling embryonic properties during the embryo-to-seedling phase transition. Here we report that a histone deacetylase19 (HDA19)-associated regulator, scarecrow-like15 (SCL15), is essential for repressing the seed maturation programme in vegetative tissues. SCL15 is expressed in and GFP-tagged SCL15 predominantly localizes to, the vascular bundles particularly in the phloem companion cells and neighbouring specialized cells. Mutation of SCL15 leads to a global shift in gene expression in seedlings to a profile resembling late embryogenesis in seeds. In scl15 seedlings, many genes involved in seed maturation are markedly derepressed with concomitant accumulation of seed 12S globulin; this is correlated with elevated levels of histone acetylation at a subset of seed-specific loci. SCL15 physically interacts with HDA19 and direct targets of HDA19-SCL15 association are identified. These studies reveal that SCL15 acts as an HDA19-associated regulator to repress embryonic traits in seedlings. | | | 26129778
![26129778](/INTERSHOP/static/WFS/Merck-CL-Site/-/-/es_ES/images/outbound-arrow.png) |
Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea. Su, LC; Deng, B; Liu, S; Li, LM; Hu, B; Zhong, YT; Li, L Frontiers in plant science
6
512
2015
Mostrar resumen
Histone acetylation, which together with histone methylation regulates gene activity in response to stress, is an important epigenetic modification. There is an increasing research focus on histone acetylation in crops, but there is no information to date in peanut (Arachis hypogaea). We showed that osmotic stress and ABA affect the acetylation of histone H3 loci in peanut seedlings by immunoblotting experiments. Using RNA-seq data for peanut, we found a RPD3/HDA1-like superfamily histone deacetylase (HDAC), termed AhHDA1, whose gene is up-regulated by PEG-induced water limitation and ABA signaling. We isolated and characterized AhHDA1 from A. hypogaea, showing that AhHDA1 is very similar to an Arabidopsis HDAC (AtHDA6) and, in recombinant form, possesses HDAC activity. To understand whether and how osmotic stress and ABA mediate the peanut stress response by epigenetics, the expression of AhHDA1 and stress-responsive genes following treatment with PEG, ABA, and the specific HDAC inhibitor trichostatin A (TSA) were analyzed. AhHDA1 transcript levels were enhanced by all three treatments, as was expression of peanut transcription factor genes, indicating that AhHDA1 might be involved in the epigenetic regulation of stress resistance genes that comprise the responses to osmotic stress and ABA. | | | 26217363
![26217363](/INTERSHOP/static/WFS/Merck-CL-Site/-/-/es_ES/images/outbound-arrow.png) |
The Epigenome of Schistosoma mansoni Provides Insight about How Cercariae Poise Transcription until Infection. Roquis, D; Lepesant, JM; Picard, MA; Freitag, M; Parrinello, H; Groth, M; Emans, R; Cosseau, C; Grunau, C PLoS neglected tropical diseases
9
e0003853
2015
Mostrar resumen
Chromatin structure can control gene expression and can define specific transcription states. For example, bivalent methylation of histone H3K4 and H3K27 is linked to poised transcription in vertebrate embryonic stem cells (ESC). It allows them to rapidly engage specific developmental pathways. We reasoned that non-vertebrate metazoans that encounter a similar developmental constraint (i.e. to quickly start development into a new phenotype) might use a similar system. Schistosomes are parasitic platyhelminthes that are characterized by passage through two hosts: a mollusk as intermediate host and humans or rodents as definitive host. During its development, the parasite undergoes drastic changes, most notable immediately after infection of the definitive host, i.e. during the transition from the free-swimming cercariae into adult worms.We used Chromatin Immunoprecipitation followed by massive parallel sequencing (ChIP-Seq) to analyze genome-wide chromatin structure of S. mansoni on the level of histone modifications (H3K4me3, H3K27me3, H3K9me3, and H3K9ac) in cercariae, schistosomula and adults (available at http://genome.univ-perp.fr). We saw striking differences in chromatin structure between the developmental stages, but most importantly we found that cercariae possess a specific combination of marks at the transcription start sites (TSS) that has similarities to a structure found in ESC. We demonstrate that in cercariae no transcription occurs, and we provide evidences that cercariae do not possess large numbers of canonical stem cells.We describe here a broad view on the epigenome of a metazoan parasite. Most notably, we find bivalent histone H3 methylation in cercariae. Methylation of H3K27 is removed during transformation into schistosomula (and stays absent in adults) and transcription is activated. In addition, shifts of H3K9 methylation and acetylation occur towards upstream and downstream of the transcriptional start site (TSS). We conclude that specific H3 modifications are a phylogenetically older and probably more general mechanism, i.e. not restricted to stem cells, to poise transcription. Since adult couples must form to cause the disease symptoms, changes in histone modifications appear to be crucial for pathogenesis and represent therefore a therapeutic target. | | | 26305466
![26305466](/INTERSHOP/static/WFS/Merck-CL-Site/-/-/es_ES/images/outbound-arrow.png) |
Identification of and Molecular Basis for SIRT6 Loss-of-Function Point Mutations in Cancer. Kugel, S; Feldman, JL; Klein, MA; Silberman, DM; Sebastián, C; Mermel, C; Dobersch, S; Clark, AR; Getz, G; Denu, JM; Mostoslavsky, R Cell reports
13
479-88
2015
Mostrar resumen
Chromatin factors have emerged as the most frequently dysregulated family of proteins in cancer. We have previously identified the histone deacetylase SIRT6 as a key tumor suppressor, yet whether point mutations are selected for in cancer remains unclear. In this manuscript, we characterized naturally occurring patient-derived SIRT6 mutations. Strikingly, all the mutations significantly affected either stability or catalytic activity of SIRT6, indicating that these mutations were selected for in these tumors. Further, the mutant proteins failed to rescue sirt6 knockout (SIRT6 KO) cells, as measured by the levels of histone acetylation at glycolytic genes and their inability to rescue the tumorigenic potential of these cells. Notably, the main activity affected in the mutants was histone deacetylation rather than demyristoylation, pointing to the former as the main tumor-suppressive function for SIRT6. Our results identified cancer-associated point mutations in SIRT6, cementing its function as a tumor suppressor in human cancer. | | | 26456828
![26456828](/INTERSHOP/static/WFS/Merck-CL-Site/-/-/es_ES/images/outbound-arrow.png) |
Genome wide mapping of UBF binding-sites in mouse and human cell lines. Diesch, J; Hannan, RD; Sanij, E Genomics data
3
103-5
2015
Mostrar resumen
The upstream binding transcription factor (UBTF, also called UBF) is thought to function exclusively in RNA polymerase I (Pol I)-specific transcription of the ribosomal genes. We recently reported in Sanij et al. (2014) [1] that the two isoforms of UBF (UBF1/2) are enriched at Pol II-transcribed genes throughout the mouse and human genomes. By using chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) of UBF1/2, Pol I, Pol II, H3K9me3, H3K4me4, H3K9ac and H4 hyperacetylation, we reported a correlation of UBF1/2 binding with enrichments in Pol II and markers of active chromatin. In addition, we examined a functional role for UBF1/2 in mediating Pol II transcription by performing expression array analysis in control and UBF1/2 depleted NIH3T3 cells. Our data demonstrate that UBF1/2 bind highly active Pol II-transcribed genes and mediate their expression without recruiting Pol I. Furthermore, we reported ChIP-sequencing analysis of UBF1/2 in immortalized human epithelial cells and their isogenically matched transformed counterparts. Here we report the experimental design and the description of the ChIP-sequencing and microarray expression datasets uploaded to NCBI Sequence Research Archive (SRA) and Gene Expression Omnibus (GEO). | | | 26484160
![26484160](/INTERSHOP/static/WFS/Merck-CL-Site/-/-/es_ES/images/outbound-arrow.png) |
ATF1 modulates the heat shock response by regulating the stress-inducible heat shock factor 1 transcription complex. Takii, R; Fujimoto, M; Tan, K; Takaki, E; Hayashida, N; Nakato, R; Shirahige, K; Nakai, A Molecular and cellular biology
35
11-25
2015
Mostrar resumen
The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. | | | 25312646
![25312646](/INTERSHOP/static/WFS/Merck-CL-Site/-/-/es_ES/images/outbound-arrow.png) |
Uncoupling histone turnover from transcription-associated histone H3 modifications. Ferrari, P; Strubin, M Nucleic acids research
43
3972-85
2015
Mostrar resumen
Transcription in eukaryotes is associated with two major changes in chromatin organization. Firstly, nucleosomal histones are continuously replaced by new histones, an event that in yeast occurs predominantly at transcriptionally active promoters. Secondly, histones become modified post-translationally at specific lysine residues. Some modifications, including histone H3 trimethylation at lysine 4 (H3K4me3) and acetylation at lysines 9 (H3K9ac) and 14 (H3K14ac), are specifically enriched at active promoters where histones exchange, suggesting a possible causal relationship. Other modifications accumulate within transcribed regions and one of them, H3K36me3, is thought to prevent histone exchange. Here we explored the relationship between these four H3 modifications and histone turnover at a few selected genes. Using lysine-to-arginine mutants and a histone exchange assay, we found that none of these modifications plays a major role in either promoting or preventing histone turnover. Unexpectedly, mutation of H3K56, whose acetylation occurs prior to chromatin incorporation, had an effect only when introduced into the nucleosomal histone. Furthermore, we used various genetic approaches to show that histone turnover can be experimentally altered with no major consequence on the H3 modifications tested. Together, these results suggest that transcription-associated histone turnover and H3 modification are two correlating but largely independent events. | | | 25845593
![25845593](/INTERSHOP/static/WFS/Merck-CL-Site/-/-/es_ES/images/outbound-arrow.png) |
Epigenetic mechanisms are involved in the regulation of ethanol consumption in mice. Qiang, M; Li, JG; Denny, AD; Yao, JM; Lieu, M; Zhang, K; Carreon, S The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP)
18
2015
Mostrar resumen
Repeated alcohol exposure is known to increase subsequent ethanol consumption in mice. However, the underlying mechanisms have not been fully elucidated. One postulated mechanism involves epigenetic modifications, including histone modifications and DNA methylation of relevant genes such as NR2B or BDNF.To investigate the role of epigenetic mechanisms in the development of alcohol drinking behavior, an established chronic intermittent ethanol exposure reinforced ethanol drinking mouse model with vapor inhalation over two 9-day treatment regimens was used. The DNA methyltransferase inhibitor, 5-azacytidine or the histone deacetylase inhibitor, Trichostatin A was administered (intraperitoneally) to C57BL/6 mice 30 min before daily exposure to chronic intermittent ethanol. Changes in ethanol consumption were measured using the 2-bottle choice test.The results indicated that systemic administration of Trichostatin A (2.5 µg/g) facilitated chronic intermittent ethanol-induced ethanol drinking, but systemic administration of 5-azacytidine (2 µg/g) did not cause the same effect. However, when 5-azacytidine was administered by intracerebroventricular injection, it facilitated chronic intermittent ethanol-induced ethanol drinking. Furthermore, the increased drinking caused by chronic intermittent ethanol was prevented by injection of a methyl donor, S-adenosyl-L-methionine. To provide evidence that chronic intermittent ethanol- or Trichostatin A-induced DNA demethylation and histone modifications of the NR2B promoter may underlie the altered ethanol consumption, we examined epigenetic modifications and NR2B expression in the prefrontal cortex of these mice. Chronic intermittent ethanol or Trichostatin A decreased DNA methylation and increased histone acetylation in the NR2B gene promoter, as well as mRNA levels of NR2B in these mice.Taken together, these results indicate that epigenetic modifications are involved in regulating ethanol drinking behavior, partially through altering NR2B expression. | | | 25522411
![25522411](/INTERSHOP/static/WFS/Merck-CL-Site/-/-/es_ES/images/outbound-arrow.png) |