Inhibition of the transient receptor potential melastatin-2 channel causes increased DNA damage and decreased proliferation in breast adenocarcinoma cells. Hopkins, MM; Feng, X; Liu, M; Parker, LP; Koh, DW International journal of oncology
46
2267-76
2015
Mostrar resumen
Transient receptor potential, melastatin-2 (TRPM2) is a plasma membrane cation channel with important roles in sensory functions and promoting cell death. However, we demonstrated here that TRPM2 was present in the nuclei of MCF-7 and MDA-MB-231 human breast adenocarcinoma cells, and its pharmacologic inhibition or RNAi silencing caused decreased cell proliferation. Neither an effect on proliferation nor a localization of TRPM2 in the nucleus was observed in noncancerous HMEC and MCF-10A human mammary epithelial cells. Investigation of possible effects of TRPM2 function in the nucleus demonstrated that pharmacologic inhibition or RNAi silencing of TRPM2 in MCF-7 and MDA-MB-231 human breast adenocarcinoma cells caused up to 4-fold increases in DNA damage levels, as compared to noncancerous breast cells after equivalent treatments. These results indicate that TRPM2 has a novel nuclear function in human breast adenocarcinoma cells that facilitates the integrity of genomic DNA, a finding that is distinct from its previously reported role as a plasma membrane cation channel in noncancerous cells. In summary, we report here a novel effect promoted by TRPM2, where it functions to minimize DNA damage and thus may have a role in the protection of genomic DNA in breast cancer cells. Our study therefore provides compelling evidence that TRPM2 has a unique role in breast adenocarcinoma cells. Accordingly, these studies suggest that TRPM2 is a potential therapeutic target, where its pharmacologic inhibition may provide an innovative strategy to selectively increase DNA damage levels in breast cancer cells. | | | 25760245
|
Tempol treatment reduces anxiety-like behaviors induced by multiple anxiogenic drugs in rats. Patki, G; Salvi, A; Liu, H; Atrooz, F; Alkadhi, I; Kelly, M; Salim, S PloS one
10
e0117498
2015
Mostrar resumen
We have published that pharmacological induction of oxidative stress (OS) causes anxiety-like behavior in rats. Using animal models, we also have established that psychological stress induces OS and leads to anxiety-like behaviors. All evidence points towards the causal role of OS in anxiety-like behaviors. To fully ascertain the role of OS in anxiety-like behaviors, it is reasonable to test whether the pro-anxiety effects of anxiogenic drugs caffeine or N-methyl-beta-carboline-3-carboxamide (FG-7142) can be mitigated using agents that minimize OS. In this study, osmotic pumps were either filled with antioxidant tempol or saline. The pumps were attached to the catheter leading to the brain cannula and inserted into the subcutaneous pocket in the back pocket of the rat. Continuous i.c.v. infusion of saline or tempol in the lateral ventricle of the brain (4.3 mmol/day) was maintained for 1 week. Rats were intraperitoneally injected either with saline or an anxiogenic drug one at a time. Two hours later all groups were subjected to behavioral assessments. Anxiety-like behavior tests (open-field, light-dark and elevated plus maze) suggested that tempol prevented anxiogenic drug-induced anxiety-like behavior in rats. Furthermore, anxiogenic drug-induced increase in stress examined via plasma corticosterone and increased oxidative stress levels assessed via plasma 8-isoprostane were prevented with tempol treatment. Protein carbonylation assay also suggested preventive effect of tempol in the prefrontal cortex brain region of rats. Antioxidant protein expression and pro-inflammatory cytokine levels indicate compromised antioxidant defense as well as an imbalance of inflammatory response. | | | 25793256
|
Physical activity enhances metabolic fitness independently of cardiorespiratory fitness in marathon runners. Laye, MJ; Nielsen, MB; Hansen, LS; Knudsen, T; Pedersen, BK Disease markers
2015
806418
2015
Mostrar resumen
High levels of cardiovascular fitness (CRF) and physical activity (PA) are associated with decreased mortality and risk to develop metabolic diseases. The independent contributions of CRF and PA to metabolic disease risk factors are unknown. We tested the hypothesis that runners who run consistently greater than 50 km/wk and/or greater than 2 marathons/yr for the last 5 years have superior metabolic fitness compared to matched sedentary subjects (CRF, age, gender, and BMI). Case-control recruitment of 31 pairs of runner-sedentary subjects identified 10 matched pairs with similar VO2max (mL/min/kg) (similar-VO2max). The similar-VO2max group was compared with a group of age, gender, and BMI matched pairs who had the largest difference in VO2max (different-VO2max). Primary outcomes that defined metabolic fitness including insulin response to an oral glucose tolerance test, fasting lipids, and fasting insulin were superior in runners versus sedentary controls despite similar VO2max. Furthermore, performance (velocity at VO2max, running economy), improved exercise metabolism (lactate threshold), and skeletal muscle levels of mitochondrial proteins were superior in runners versus sedentary controls with similar VO2max. In conclusion subjects with a high amount of PA have more positive metabolic health parameters independent of CRF. PA is thus a good marker against metabolic diseases. | Western Blotting | | 25821340
|
Ω3 Supplementation and intermittent hypobaric hypoxia induce cardioprotection enhancing antioxidant mechanisms in adult rats. Herrera, EA; Farías, JG; González-Candia, A; Short, SE; Carrasco-Pozo, C; Castillo, RL Marine drugs
13
838-60
2015
Mostrar resumen
Intermittent hypobaric hypoxia (IH) is linked with oxidative stress, impairing cardiac function. However, early IH also activate cardio-protective mechanisms. Omega 3 fatty acids (Ω3) induce cardioprotection by reducing infarct size and reinforcing antioxidant defenses. The aim of this work was to determine the combined effects of IH and Ω3 on cardiac function; oxidative balance and inflammatory state. Twenty-eight rats were randomly divided into four groups: normobaric normoxia (N); N + Ω3 (0.3 g·kg-1·day-1); IH; and IH + Ω3. IH was induced by 4 intercalate periods of hypoxia (4 days)-normoxia (4 days) in a hypobaric chamber during 32 days. At the end of the exposure, hearts were mounted in a Langendorff system and subjected to 30 min of ischemia followed by 120 min of reperfusion. In addition, we determined HIF-1α and ATP levels, as well as oxidative stress by malondialdehyde and nitrotyrosine quantification. Further, the expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase was determined. NF-kappaB and myeloperoxidase levels were assessed in the hearts. Relative to N hearts, IH improved left ventricular function (Left ventricular developed pressure: N; 21.8 ± 3.4 vs. IH; 42.8 ± 7.1 mmHg; p less than 0.05); reduced oxidative stress (Malondialdehyde: N; 14.4 ± 1.8 vs. IH; 7.3 ± 2.1 μmol/mg prot.; p less than 0.05); and increased antioxidant enzymes expression. Supplementation with Ω3 induces similar responses as IH group. Our findings suggest that both, IH and Ω3 in an independent manner, induce functional improvement by antioxidant and anti-inflammatory mechanisms, establishing cardio-protection. | | | 25658050
|
Muscle dysfunction associated with adjuvant-induced arthritis is prevented by antioxidant treatment. Yamada, T; Abe, M; Lee, J; Tatebayashi, D; Himori, K; Kanzaki, K; Wada, M; Bruton, JD; Westerblad, H; Lanner, JT Skeletal muscle
5
20
2015
Mostrar resumen
In addition to the primary symptoms arising from inflamed joints, muscle weakness is prominent and frequent in patients with rheumatoid arthritis (RA). Here, we investigated the mechanisms of arthritis-induced muscle dysfunction in rats with adjuvant-induced arthritis (AIA).AIA was induced in the knees of rats by injection of complete Freund's adjuvant and was allowed to develop for 21 days. Muscle contractile function was assessed in isolated extensor digitorum longus (EDL) muscles. To assess mechanisms underlying contractile dysfunction, we measured redox modifications, redox enzymes and inflammatory mediators, and activity of actomyosin ATPase and sarcoplasmic reticulum (SR) Ca(2+)-ATPase.EDL muscles from AIA rats showed decreased tetanic force per cross-sectional area and slowed twitch contraction and relaxation. These contractile dysfunctions in AIA muscles were accompanied by marked decreases in actomyosin ATPase and SR Ca(2+)-ATPase activities. Actin aggregates were observed in AIA muscles, and these contained high levels of 3-nitrotyrosine and malondialdehyde-protein adducts. AIA muscles showed increased protein expression of NADPH oxidase 2/gp91(phox), neuronal nitric oxide synthase, tumor necrosis factor α (TNF-α), and high-mobility group box 1 (HMGB1). Treatment of AIA rats with EUK-134 (3 mg/kg/day), a superoxide dismutase/catalase mimetic, prevented both the decrease in tetanic force and the formation of actin aggregates in EDL muscles without having any beneficial effect on the arthritis development.Antioxidant treatment prevented the development of oxidant-induced actin aggregates and contractile dysfunction in the skeletal muscle of AIA rats. This implies that antioxidant treatment can be used to effectively counteract muscle weakness in inflammatory conditions. | | | 26161253
|
Manganese superoxide dismutase expression is negatively associated with microRNA-301a in human pancreatic ductal adenocarcinoma. Pandit, H; Zhang, W; Li, Y; Agle, S; Li, X; Li, SP; Cui, G; Li, Y; Martin, RC Cancer gene therapy
481-6
2015
Mostrar resumen
Manganese superoxide dismutase (MnSOD) expression has been found to be low in human pancreatic ductal adenocarcinoma (PDAC). Previously, we have reported that microRNA-301a (miR-301a) was found being upregulated via nuclear factor-κB (NF-κB) feedback loop in human PDAC. In this study, we investigate whether the miR-301a expression level is associated with MnSOD expression in human PDAC. We established a xenograft PDAC mouse model using transfected PanC-1 cells (miR-301a antisense or scrambled control) to investigate tumor growth and the interaction between MnSOD and miR-301a. The animal study indicated that miR-301a antisense transfection could significantly decrease the growth rate of inoculated PDAC cells, and this decrease in tumor growth rate is associated with increased MnSOD expression. To evaluate the MnSOD-miR-301a correlation in human PDAC, we have analyzed a total of 60 PDAC specimens, along with 20 normal pancreatic tissue (NPT) specimens. Human specimens confirmed a significant decrease of MnSOD expression in PDAC specimens (0.88±0.38) compared with NPT control (2.45±0.76; P<0.05), whereas there was a significant increase in miR-301a levels in PDAC specimens (0.89±0.28) compared with NPT control (0.25±0.41; P<0.05). We conclude that MnSOD expression is negatively associated with miR-301a levels in PDAC tissues, and lower miR-301a levels are associated with increased MnSOD expression and inhibition of PDAC growth. | Immunohistochemistry | | 26384137
|
Daily Oxygen/O₃ Treatment Reduces Muscular Fatigue and Improves Cardiac Performance in Rats Subjected to Prolonged High Intensity Physical Exercise. Di Filippo, C; Trotta, MC; Maisto, R; Siniscalco, D; Luongo, M; Mascolo, L; Alfano, R; Accardo, M; Rossi, C; Ferraraccio, F; D'Amico, M Oxidative medicine and cellular longevity
2015
190640
2015
Mostrar resumen
Rats receiving daily intraperitoneal administration of O2 and running on a treadmill covered an average distance of 482.8 ± 21.8 m/week as calculated during 5-week observation. This distance was increased in rats receiving daily intraperitoneal administration of an oxygen/O3 mixture at a dose of 100; 150; and 300 μg/kg with the maximum increase being +34.5% at 300 μg/kg and still present after stopping the administration of oxygen/O3. Oxygen/O3 decreased the mean arterial blood pressure (-13%), the heart rate (-6%), the gastrocnemius and cardiac hypertrophy, and fibrosis and reduced by 49% the left ventricular mass and relative wall thickness measurements. Systolic and diastolic functions were improved in exercised oxygen/O3 rats compared to O2 rats. Oxygen/O3 treatment led to higher MPI index starting from the dose of 150 μg/kg (p less than 0.05) and more effective (+14%) at a dose of 300 μg/kg oxygen/O3. Oxygen/O3 dose-dependently increased the expression of the antioxidant enzymes Mn-SOD and GPx1 and of eNOS compared to the exercised O2 rats. The same doses resulted in decrease of LDH levels, CPK, TnI, and nitrotyrosine concentration in the heart and gastrocnemius tissues, arguing a beneficial effect of the ozone molecule against the fatigue induced by a prolonged high intensity exercise. | | | 26265981
|
A novel inhibitor of the insulin/IGF signaling pathway protects from age-onset, neurodegeneration-linked proteotoxicity. El-Ami, T; Moll, L; Carvalhal Marques, F; Volovik, Y; Reuveni, H; Cohen, E Aging cell
13
165-74
2014
Mostrar resumen
Aging manipulation is an emerging strategy aimed to postpone the manifestation of late-onset neurodegenerative disorders such as Alzheimer's (AD) and Huntington's diseases (HD) and to slow their progression once emerged. Reducing the activity of the insulin/IGF signaling cascade (IIS), a prominent aging-regulating pathway, protects worms from proteotoxicity of various aggregative proteins, including the AD-associated peptide, Aβ- and the HD-linked peptide, polyQ40. Similarly, IGF1 signaling reduction protects mice from AD-like disease. These discoveries suggest that IIS inhibitors can serve as new drugs for the treatment of neurodegenerative maladies including AD and HD. Here, we report that NT219, a novel IIS inhibitor, mediates a long-lasting, highly efficient inhibition of this signaling cascade by a dual mechanism; it reduces the autophosphorylation of the IGF1 receptor and directs the insulin receptor substrates 1 and 2 (IRS 1/2) for degradation. NT219 treatment promotes stress resistance and protects nematodes from AD- and HD-associated proteotoxicity without affecting lifespan. Our discoveries strengthen the theme that IIS inhibition has a therapeutic potential as a cure for neurodegenerative maladies and point at NT219 as a promising compound for the treatment of these disorders through a selective manipulation of aging. | | | 24261972
|
Oxidative stress and altered lipid homeostasis in the programming of offspring fatty liver by maternal obesity. Alfaradhi, MZ; Fernandez-Twinn, DS; Martin-Gronert, MS; Musial, B; Fowden, A; Ozanne, SE American journal of physiology. Regulatory, integrative and comparative physiology
307
R26-34
2014
Mostrar resumen
Changes in the maternal nutritional environment during fetal development can influence offspring's metabolic risk in later life. Animal models have demonstrated that offspring of diet-induced obese dams develop metabolic complications, including nonalcoholic fatty liver disease. In this study we investigated the mechanisms in young offspring that lead to the development of nonalcoholic fatty liver disease (NAFLD). Female offspring of C57BL/6J dams fed either a control or obesogenic diet were studied at 8 wk of age. We investigated the roles of oxidative stress and lipid metabolism in contributing to fatty liver in offspring. There were no differences in body weight or adiposity at 8 wk of age; however, offspring of obese dams were hyperinsulinemic. Oxidative damage markers were significantly increased in their livers, with reduced levels of the antioxidant enzyme glutathione peroxidase-1. Mitochondrial complex I and II activities were elevated, while levels of mitochondrial cytochrome c were significantly reduced and glutamate dehydrogenase was significantly increased, suggesting mitochondrial dysfunction. Offspring of obese dams also had significantly greater hepatic lipid content, associated with increased levels of PPARγ and reduced triglyceride lipase. Liver glycogen and protein content were concomitantly reduced in offspring of obese dams. In conclusion, offspring of diet-induced obese dams have disrupted liver metabolism and develop NAFLD prior to any differences in body weight or body composition. Oxidative stress may play a mechanistic role in the progression of fatty liver in these offspring. | Western Blotting | Mouse | 24789994
|
Uridine prevents fenofibrate-induced fatty liver. Le, TT; Urasaki, Y; Pizzorno, G PloS one
9
e87179
2014
Mostrar resumen
Uridine, a pyrimidine nucleoside, can modulate liver lipid metabolism although its specific acting targets have not been identified. Using mice with fenofibrate-induced fatty liver as a model system, the effects of uridine on liver lipid metabolism are examined. At a daily dosage of 400 mg/kg, fenofibrate treatment causes reduction of liver NAD(+)/NADH ratio, induces hyper-acetylation of peroxisomal bifunctional enzyme (ECHD) and acyl-CoA oxidase 1 (ACOX1), and induces excessive accumulation of long chain fatty acids (LCFA) and very long chain fatty acids (VLCFA). Uridine co-administration at a daily dosage of 400 mg/kg raises NAD(+)/NADH ratio, inhibits fenofibrate-induced hyper-acetylation of ECHD, ACOX1, and reduces accumulation of LCFA and VLCFA. Our data indicates a therapeutic potential for uridine co-administration to prevent fenofibrate-induced fatty liver. | | | 24475249
|