Histamine-induced vasoconstriction involves phosphorylation of a specific inhibitor protein for myosin phosphatase by protein kinase C alpha and delta isoforms. Eto, M, et al. J. Biol. Chem., 276: 29072-8 (2001)
2001
Mostra il sommario
Histamine stimulus triggers inhibition of myosin phosphatase-enhanced phosphorylation of myosin and contraction of vascular smooth muscle. In response to histamine stimulation of intact femoral artery, a smooth muscle-specific protein called CPI-17 (for protein kinase C-potentiated inhibitory protein for heterotrimeric myosin light chain phosphatase of 17 kDa) is phosphorylated and converted to a potent inhibitor for myosin phosphatase. Phosphorylation of CPI-17 is diminished by pretreatment with either or GF109203x, suggesting involvement of multiple kinases (Kitazawa, T., Eto, M., Woodsome, T. P., and Brautigan, D. L. (2000) J. Biol. Chem. 275, 9897--9900). Here we purified and identified CPI-17 kinases endogenous to pig artery that phosphorylate CPI-17. DEAE-Toyopearl column chromatography of aorta extracts separated two CPI-17 kinases. One kinase was protein kinase C (PKC) alpha, and the second kinase was purified to homogeneity as a 45-kDa protein, and identified by sequencing as PKC delta. Purified PKC delta was 3-fold more reactive with CPI-17 compared with myelin basic protein, whereas purified PKC alpha and recombinant RhoA-activated kinases (Rho-associated coiled-coil forming protein Ser/Thr kinase and protein kinase N) showed equal activity with CPI-17 and myelin basic protein. inhibited CPI-17 phosphorylation by purified PKC delta with IC(50) of 0.6 microm (in the presence of 0.1 mm ATP) or 14 microm (2.0 mm ATP). significantly suppressed CPI-17 phosphorylation in smooth muscle cells, and the contraction of permeabilized rabbit femoral artery induced by stimulation with phorbol ester. GF109203x inhibited phorbol ester-induced contraction of rabbit femoral artery by 80%, whereas a PKC alpha/beta inhibitor, Go6976, reduced contraction by 47%. The results imply that histamine stimulation elicits contraction of vascular smooth muscle through activation of PKC alpha and especially PKC delta to phosphorylate CPI-17. | Kinase Assay | 11397799
|
Specificity and mechanism of action of some commonly used protein kinase inhibitors. Davies, S P, et al. Biochem. J., 351: 95-105 (2000)
1999
Mostra il sommario
The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays. | Kinase Assay | 10998351
|
Rho-associated kinase of chicken gizzard smooth muscle. Feng, J, et al. J. Biol. Chem., 274: 3744-52 (1999)
1998
Mostra il sommario
Rho-associated kinase (Rho-kinase) from chicken gizzard smooth muscle was purified to apparent homogeneity (160 kDa on SDS-polyacrylamide gel electrophoresis) and identified as the ROKalpha isoform. Several substrates were phosphorylated. Rates with myosin phosphatase target subunit 1 (MYPT1), myosin, and the 20-kDa myosin light chain were higher than other substrates. Thiophosphorylation of MYPT1 inhibited myosin phosphatase activity. Phosphorylation of myosin at serine 19 increased actin-activated Mg+-ATPase activity, i.e. similar to myosin light chain kinase. Myosin phosphorylation was increased at higher ionic strengths, possibly by formation of 6 S myosin. Phosphorylation of the isolated light chain and myosin phosphatase was decreased by increasing ionic strength. Rho-kinase was stimulated 1.5-2-fold by guanosine 5'-O-3-(thio)triphosphate.RhoA, whereas limited tryptic hydrolysis caused a 5-6-fold activation, independent of RhoA. Several kinase inhibitors were screened and most effective were Y-27632, staurosporine, and H-89. Several lipids caused slight activation of Rho-kinase, but arachidonic acid (30-50 microM) induced a 5-6-fold activation, independent of RhoA. These results suggest that Rho-kinase of smooth muscle may be involved in the contractile process via phosphorylation of MYPT1 and myosin. Activation by arachidonic acid presents a possible regulatory mechanism for Rho-kinase. | | 9920927
|
Transformation mediated by RhoA requires activity of ROCK kinases. Sahai, E, et al. Curr. Biol., 9: 136-45 (1999)
1998
Mostra il sommario
BACKGROUND: The Ras-related GTPase RhoA controls signalling processes required for cytoskeletal reorganisation, transcriptional regulation, and transformation. The ability of RhoA mutants to transform cells correlates not with transcription but with their ability to bind ROCK-I, an effector kinase involved in cytoskeletal reorganisation. We used a recently developed specific ROCK inhibitor, Y-27632, and ROCK truncation mutants to investigate the role of ROCK kinases in transcriptional activation and transformation. RESULTS: In NIH3T3 cells, Y-27632 did not prevent the activation of serum response factor, transcription of c-fos or cell cycle re-entry following serum stimulation. Repeated treatment of NIH3T3 cells with Y-27632, however, substantially disrupted their actin fibre network but did not affect their growth rate. Y-27632 blocked focus formation by RhoA and its guanine-nucleotide exchange factors Dbl and mNET1. It did not affect the growth rate of cells transformed by Dbl and mNET1, but restored normal growth control at confluence and prevented their growth in soft agar. Y-27632 also significantly inhibited focus formation by Ras, but had no effect on the establishment or maintenance of transformation by Src. Furthermore, it significantly inhibited anchorage-independent growth of two out of four colorectal tumour cell lines. Consistent with these data, a truncated ROCK derivative exhibited weak ability to cooperate with activated Raf in focus formation assays. CONCLUSIONS: ROCK signalling is required for both the establishment and maintenance of transformation by constitutive activation of RhoA, and contributes to the Ras-transformed phenotype. These observations provide a potential explanation for the requirement for Rho in Ras-mediated transformation. Moreover, the inhibition of ROCK kinases may be of therapeutic use. | | 10021386
|