Radical acceleration of nuclear reprogramming by chromatin remodeling with the transactivation domain of MyoD. Hirai, Hiroyuki, et al. Stem Cells, 29: 1349-61 (2011)
2010
Mostra il sommario
Induced pluripotent stem cells (iPSCs) can be created by reprogramming differentiated cells through introduction of defined genes, most commonly Oct4, Sox2, Klf4, and c-Myc (OSKM). However, this process is slow and extremely inefficient. Here, we demonstrate radical acceleration of iPSC creation with a fusion gene between Oct4 and the powerful transactivation domain (TAD) of MyoD (M(3)O). Transduction of M(3) O as well as Sox2, Klf4, and c-Myc into fibroblasts effectively remodeled patterns of DNA methylation, chromatin accessibility, histone modifications, and protein binding at pluripotency genes, raising the efficiency of making mouse and human iPSCs more than 50-fold in comparison to OSKM. These results identified that one of the most critical barriers to iPSC creation is poor chromatin accessibility and protein recruitment to pluripotency genes. The MyoD TAD has a capability of overcoming this problem. Our approach of fusing TADs to unrelated transcription factors has far-reaching implications as a powerful tool for transcriptional reprogramming beyond application to iPSC technology. | 21732495
|
A potential use of embryonic stem cell medium for the in vitro culture of preimplantation embryos. Gelber K. et al. J. Assist. Reprod. Genet.
28(8)
659-668
2010
Mostra il sommario
PURPOSE: To assess the impact of embryonic stem cell culture medium (ESCM) on the pre- and post-implantation development of the mouse embryo, as a mammalian model, in comparison with the conventional culture medium, a potassium simplex optimized medium (KSOM). METHODS: Development in ESCM versus KSOM was compared in terms of embryo morphology, cleavage, cavitation, hatching, cell number, expression of TE and ICM transcription factors (Cdx2 and Oct4, respectively), implantation, and development in utero. RESULTS: An enriched medium like ESCM can be beneficial for in vitro embryo development when cultured from the 8-cell stage, as evidenced by promotion of blastocyst development with respect to cavity expansion, hatching, and cell division. Such benefits were not observed when embryos were cultured from the 2-cell stage. CONCLUSIONS: ESCM may augment in vitro embryo development from the 8-cell stage. Using different culture media at different stages may be beneficial to achieve more effective human in vitro fertilization. | 21617931
|