In vivo live imaging of RNA polymerase II transcription factories in primary cells. Ghamari, Alireza, et al. Genes Dev., 27: 767-777 (2013)
2013
Mostra il sommario
Transcription steps are marked by different modifications of the C-terminal domain of RNA polymerase II (RNAPII). Phosphorylation of Ser5 and Ser7 by cyclin-dependent kinase 7 (CDK7) as part of TFIIH marks initiation, whereas phosphorylation of Ser2 by CDK9 marks elongation. These processes are thought to take place in localized transcription foci in the nucleus, known as "transcription factories," but it has been argued that the observed clusters/foci are mere fixation or labeling artifacts. We show that transcription factories exist in living cells as distinct foci by live-imaging fluorescently labeled CDK9, a kinase known to associate with active RNAPII. These foci were observed in different cell types derived from CDK9-mCherry knock-in mice. We show that these foci are very stable while highly dynamic in exchanging CDK9. Chromatin immunoprecipitation (ChIP) coupled with deep sequencing (ChIP-seq) data show that the genome-wide binding sites of CDK9 and initiating RNAPII overlap on transcribed genes. Immunostaining shows that CDK9-mCherry foci colocalize with RNAPII-Ser5P, much less with RNAPII-Ser2P, and not with CDK12 (a kinase reported to be involved in the Ser2 phosphorylation) or with splicing factor SC35. In conclusion, transcription factories exist in living cells, and initiation and elongation of transcripts takes place in different nuclear compartments. | 23592796
|
Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Chapman, Rob D, et al. Science, 318: 1780-2 (2007)
2007
Mostra il sommario
RNA polymerase II is distinguished by its large carboxyl-terminal repeat domain (CTD), composed of repeats of the consensus heptapeptide Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Differential phosphorylation of serine-2 and serine-5 at the 5' and 3' regions of genes appears to coordinate the localization of transcription and RNA processing factors to the elongating polymerase complex. Using monoclonal antibodies, we reveal serine-7 phosphorylation on transcribed genes. This position does not appear to be phosphorylated in CTDs of less than 20 consensus repeats. The position of repeats where serine-7 is substituted influenced the appearance of distinct phosphorylated forms, suggesting functional differences between CTD regions. Our results indicate that restriction of serine-7 epitopes to the Linker-proximal region limits CTD phosphorylation patterns and is a requirement for optimal gene expression. | 18079404
|