Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Bisson-Filho, AW; Hsu, YP; Squyres, GR; Kuru, E; Wu, F; Jukes, C; Sun, Y; Dekker, C; Holden, S; VanNieuwenhze, MS; Brun, YV; Garner, EC Science
355
739-743
2016
Mostra il sommario
The mechanism by which bacteria divide is not well understood. Cell division is mediated by filaments of FtsZ and FtsA (FtsAZ) that recruit septal peptidoglycan-synthesizing enzymes to the division site. To understand how these components coordinate to divide cells, we visualized their movements relative to the dynamics of cell wall synthesis during cytokinesis. We found that the division septum was built at discrete sites that moved around the division plane. FtsAZ filaments treadmilled circumferentially around the division ring and drove the motions of the peptidoglycan-synthesizing enzymes. The FtsZ treadmilling rate controlled both the rate of peptidoglycan synthesis and cell division. Thus, FtsZ treadmilling guides the progressive insertion of new cell wall by building increasingly smaller concentric rings of peptidoglycan to divide the cell. | 28209898
|
A benzamide-dependent ftsZ mutant reveals residues crucial for Z-ring assembly. Adams, DW; Wu, LJ; Errington, J Mol Microbiol
99
1028-42
2015
Mostra il sommario
In almost all bacteria, cell division is co-ordinated by the essential tubulin homologue FtsZ and represents an attractive but as yet unexploited target for new antibiotics. The benzamides, e.g. PC190723, are potent FtsZ inhibitors that have the potential to yield an important new class of antibiotic. However, the evolution of resistance poses a challenge to their development. Here we show that a collection of PC190723-resistant and -dependent strains of Staphylococcus aureus exhibit severe growth and morphological defects, questioning whether these ftsZ mutations would be clinically relevant. Importantly, we show that the most commonly isolated substitution remains sensitive to the simplest benzamide 3-MBA and likely works by occluding compound binding. Extending this analysis to Bacillus subtilis, we isolated a novel benzamide-dependent strain that divides using unusual helical division events. The ftsZ mutation responsible encodes the substitution of a highly conserved residue, which lies outside the benzamide-binding site and forms part of an interface between the N- and C-terminal domains that we show is necessary for normal FtsZ function. Together with an intragenic suppressor mutation that mimics benzamide binding, the results provide genetic evidence that benzamides restrict conformational changes in FtsZ and also highlights their utility as tools to probe bacterial division. | 26601800
|
Role of penicillin-binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis. Daniel, RA; Harry, EJ; Errington, J Mol Microbiol
35
299-311
1999
Mostra il sommario
We have characterized the role of the penicillin-binding protein PBP 2B in cell division of Bacillus subtilis. We have shown that depletion of the protein results in an arrest in division, but that this arrest is slow, probably because the protein is relatively stable. PBP 2B-depleted filaments contained, at about their mid-points, structures resembling partially formed septa, into which most, if not all, of the division proteins had assembled. Although clearly deficient in wall material, membrane invagination seemed to continue, indicating that membrane and wall ingrowth can be uncoupled. At other potential division sites along the filaments, no visible ingrowths were observed, although FtsZ rings assembled at regular intervals. Thus, PBP 2B is apparently required for both the initiation of division and continued septal ingrowth. Immunofluorescence microscopy showed that the protein is recruited to the division site. The pattern of localization suggested that this recruitment occurs continually during septal ingrowth. During sporulation, PBP 2B was present transiently in the asymmetrical septum of sporulating cells, and its availability may play a role in the regulation of sporulation septation. | 10652091
|