Selective conversion of fibroblasts into peripheral sensory neurons. Blanchard, JW; Eade, KT; Szűcs, A; Lo Sardo, V; Tsunemoto, RK; Williams, D; Sanna, PP; Baldwin, KK Nature neuroscience
18
25-35
2015
Mostra il sommario
Humans and mice detect pain, itch, temperature, pressure, stretch and limb position via signaling from peripheral sensory neurons. These neurons are divided into three functional classes (nociceptors/pruritoceptors, mechanoreceptors and proprioceptors) that are distinguished by their selective expression of TrkA, TrkB or TrkC receptors, respectively. We found that transiently coexpressing Brn3a with either Ngn1 or Ngn2 selectively reprogrammed human and mouse fibroblasts to acquire key properties of these three classes of sensory neurons. These induced sensory neurons (iSNs) were electrically active, exhibited distinct sensory neuron morphologies and matched the characteristic gene expression patterns of endogenous sensory neurons, including selective expression of Trk receptors. In addition, we found that calcium-imaging assays could identify subsets of iSNs that selectively responded to diverse ligands known to activate itch- and pain-sensing neurons. These results offer a simple and rapid means for producing genetically diverse human sensory neurons suitable for drug screening and mechanistic studies. | | | 25420069
|
Neurotrophin-4 regulates the survival of gustatory neurons earlier in development using a different mechanism than brain-derived neurotrophic factor. Patel, AV; Krimm, RF Developmental biology
365
50-60
2011
Mostra il sommario
The number of neurons in the geniculate ganglion that are available to innervate taste buds is regulated by neurotrophin-4 (NT-4) and brain-derived neurotrophic factor (BDNF). Our goal for the current study was to examine the timing and mechanism of NT-4-mediated regulation of geniculate neuron number during development. We discovered that NT-4 mutant mice lose 33% of their geniculate neuronal cells between E10.5 and E11.5. By E11.5, geniculate axons have just reached the tongue and do not yet innervate their gustatory targets; thus, NT-4 does not function as a target-derived growth factor. At E11.5, no difference was observed in proliferating cells or the rate at which cells exit the cell cycle between NT-4 mutant and wild type ganglia. Instead, there was an increase in TUNEL-labeling, indicating an increase in cell death in Ntf4(-/-) mice compared with wild types. However, activated caspase-3, which is up-regulated in the absence of BDNF, was not increased. This finding indicates that cell death initiated by NT-4-removal occurs through a different cell death pathway than BDNF-removal. We observed no additional postnatal loss of taste buds or neurons in Ntf4(-/-) mice. Thus, during early embryonic development, NT-4 produced in the ganglion and along the projection pathway inhibits cell death through an activated caspase-3 independent mechanism. Therefore, compared to BDNF, NT-4 plays distinct roles in gustatory development; differences include timing, source of neurotrophin, and mechanism of action. | | | 22353733
|
Sensory-motor deficits and neurofilament disorganization in gigaxonin-null mice. Ganay, T; Boizot, A; Burrer, R; Chauvin, JP; Bomont, P Molecular neurodegeneration
6
25
2010
Mostra il sommario
Giant Axonal Neuropathy (GAN) is a fatal neurodegenerative disorder with early onset characterized by a severe deterioration of the peripheral and central nervous system, involving both the motor and the sensory tracts and leading to ataxia, speech defect and intellectual disabilities. The broad deterioration of the nervous system is accompanied by a generalized disorganization of the intermediate filaments, including neurofilaments in neurons, but the implication of this defect in disease onset or progression remains unknown. The identification of gigaxonin, the substrate adaptor of an E3 ubiquitin ligase, as the defective protein in GAN allows us to now investigate the crucial role of the gigaxonin-E3 ligase in sustaining neuronal and intermediate filament integrity. To study the mechanisms controlled by gigaxonin in these processes and to provide a relevant model to test the therapeutic approaches under development for GAN, we generated a Gigaxonin-null mouse by gene targeting.We investigated for the first time in Gigaxonin-null mice the deterioration of the motor and sensory functions over time as well as the spatial disorganization of neurofilaments. We showed that gigaxonin depletion in mice induces mild but persistent motor deficits starting at 60 weeks of age in the 129/SvJ-genetic background, while sensory deficits were demonstrated in C57BL/6 animals. In our hands, another gigaxonin-null mouse did not display the early and severe motor deficits reported previously. No apparent neurodegeneration was observed in our knock-out mice, but dysregulation of neurofilaments in proximal and distal axons was massive. Indeed, neurofilaments were not only more abundant but they also showed the abnormal increase in diameter and misorientation that are characteristics of the human pathology.Together, our results show that gigaxonin depletion in mice induces mild motor and sensory deficits but recapitulates the severe neurofilament dysregulation seen in patients. Our model will allow investigation of the role of the gigaxonin-E3 ligase in organizing neurofilaments and may prove useful in understanding the pathological processes engaged in other neurodegenerative disorders characterized by accumulation of neurofilaments and dysfunction of the Ubiquitin Proteasome System, such as Amyotrophic Lateral Sclerosis, Huntington's, Alzheimer's and Parkinson's diseases. Testo completo dell'articolo | | | 21486449
|
The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in the control of the cell cycle Warnatz HJ, Schmidt D, Manke T, Piccini I, Sultan M, Borodina T, Balzereit D, Wruck W, Soldatov A, Vingron M, Lehrach H, Yaspo ML J Biol Chem
2010
Mostra il sommario
The regulation of gene expression in response to environmental signals and metabolic imbalances is a key step in maintaining cellular homeostasis. BTB and CNC homology 1 (BACH1) is a heme-binding transcription factor repressing the transcription from a subset of MAF recognition elements (MAREs) at low intracellular heme levels. Upon heme binding, BACH1 is released from the MAREs, resulting in increased expression of antioxidant response genes. To systematically address the gene regulatory networks involving BACH1, we combined chromatin immunoprecipitation-sequencing (ChIP-seq) analysis of BACH1 target genes in HEK 293 cells with knock-down of BACH1 using three independent types of small interfering RNAs followed by transcriptome profiling using microarrays. The 59 BACH1 target genes identified by ChIP-seq were found highly enriched in genes showing expression changes after BACH1 knock-down, demonstrating the impact of BACH1 repression on transcription. In addition to known and new BACH1 targets involved in heme degradation (HMOX1, FTL, FTH1, ME1, SLC48A1) and redox regulation (GCLC, GCLM, SLC7A11), we also discovered BACH1 target genes effecting cell cycle and apoptosis pathways (ITPR2, CALM1, SQSTM1, TFE3, EWSR1, CDK6, BCL2L11, MAFG) as well as subcellular transport processes (CLSTN1, PSAP, MAPT, vault RNA). The newly identified impact of BACH1 on genes involved in neurodegenerative processes and proliferation provides an interesting basis for future dissection of BACH1-mediated gene repression in neurodegeneration and virus-induced cancerogenesis. | | | 21555518
|
BDNF is required for the survival of differentiated geniculate ganglion neurons. Patel, Ami V and Krimm, Robin F Dev. Biol., 340: 419-29 (2010)
2009
Mostra il sommario
In mice lacking functional brain-derived neurotrophic factor (BDNF), the number of geniculate ganglion neurons, which innervate taste buds, is reduced by one-half. Here, we determined how and when BDNF regulates the number of neurons in the developing geniculate ganglion. The loss of geniculate neurons begins at embryonic day 13.5 (E13.5) and continues until E18.5 in BDNF-null mice. Neuronal loss in BDNF-null mice was prevented by the removal of the pro-apoptotic gene Bax. Thus, BDNF regulates embryonic geniculate neuronal number by preventing cell death rather than promoting cell proliferation. The number of neurofilament positive neurons expressing activated caspase-3 increased on E13.5 in bdnf(-/-) mice, compared to wild-type mice, demonstrating that differentiated neurons were dying. The axons of geniculate neurons approach their target cells, the fungiform papillae, beginning on E13.5, at which time we found robust BDNF(LacZ) expression in these targets. Altogether, our findings establish that BDNF produced in peripheral target cells regulates the survival of early geniculate neurons by inhibiting cell death of differentiated neurons on E13.5 of development. Thus, BDNF acts as a classic target-derived growth factor in the developing taste system. | | | 20122917
|
Subcellular compartmentalization of two calcium binding proteins, calretinin and calbindin-28 kDa, in ganglion and amacrine cells of the rat retina. Mojumder, DK; Wensel, TG; Frishman, LJ Molecular vision
14
1600-13
2008
Mostra il sommario
Intracellular free calcium ions (Ca(2+)) are an important element in retinal ganglion cell response. Two major EF-hand (E-helix-loop-F-helix-hand) calcium binding proteins in the retina, calretinin and calbindin-28 kDa, are important buffers of intracellular free Ca(2+) in neurons, and may also serve as Ca(2+)-dependent regulators of enzymes and ion channels.This study used immunohistochemistry to investigate the subcellular expression patterns of calretinin and calbindin-28 kDa, in the soma, dendrites, and the axonal compartment of rat retinal ganglion cells.Antibodies for calretinin and calbindin-28 kDa labeled different cell populations in the retinal ganglion cell layer. In this layer, calretinin labeled a larger number of cells compared to calbindin-28 kDa, many, but not all, of which were displaced amacrine cells. The calbindin-28 kDa immunopositive neurons were distinct in that their somata were peripherally encircled by microtubule associated protein 1 (MAP-1) or neurofilament-200 kDa subunit (NF-200 kDa) immunofluorescence. Although somata of retinal ganglion cells contained these calcium binding proteins, neither protein was found in the dendrites or initial segments of the axons. However, both were expressed in the ganglion cell axons in nerve fiber layer. Calretinin and calbindin-28 kDa staining overlapped in some fibers and not in others. Calretinin immunofluorescence was concentrated in discrete axonal regions, which showed limited staining for calbindin-28 kDa or for NF200 kDa, suggesting its close proximity to the plasma membrane.There is a clear compartmentalization of calbindin-28 kDa and calretinin distribution in retinal ganglion cells. This suggests that the two calcium binding proteins perform distinct functions in localized calcium signaling. It also indicates that rather than freely diffusing through the cytoplasm to attain a homogeneous distribution, calbindin-28 kDa and calretinin must be bound to cellular structures through interactions that are likely important for their functions. | | | 18769561
|
Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram. Mojumder, DK; Sherry, DM; Frishman, LJ The Journal of physiology
586
2551-80
2008
Mostra il sommario
Voltage-gated sodium channels (Na(v) channels) in retinal neurons are known to contribute to the mammalian flash electroretinogram (ERG) via activity of third-order retinal neurons, i.e. amacrine and ganglion cells. This study investigated the effects of tetrodotoxin (TTX) blockade of Na(v) channels on the b-wave, an ERG wave that originates mainly from activity of second-order retinal neurons. ERGs were recorded from anaesthetized Brown Norway rats in response to brief full-field flashes presented over a range of stimulus energies, under dark-adapted conditions and in the presence of steady mesopic and photopic backgrounds. Recordings were made before and after intravitreal injection of TTX (approximately 3 microm) alone, 3-6 weeks after optic nerve transection (ONTx) to induce ganglion cell degeneration, or in combination with an ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 200 microm) to block light-evoked activity of inner retinal, horizontal and OFF bipolar cells, or with the glutamate agonist N-methyl-D-aspartate (NMDA, 100-200 microm) to reduce light-evoked inner retinal activity. TTX reduced ERG amplitudes measured at fixed times corresponding to b-wave time to peak. Effects of TTX were seen under all background conditions, but were greatest for mesopic backgrounds. In dark-adapted retina, b-wave amplitudes were reduced only when very low stimulus energies affecting the inner retina, or very high stimulus energies were used. Loss of ganglion cells following ONTx did not affect b-wave amplitudes, and injection of TTX in eyes with ONTx reduced b-wave amplitudes by the same amount for each background condition as occurred when ganglion cells were intact, thereby eliminating a ganglion cell role in the TTX effects. Isolation of cone-driven responses by presenting test flashes after cessation of a rod-saturating conditioning flash indicated that the TTX effects were primarily on cone circuits contributing to the mixed rod-cone ERG. NMDA significantly reduced only the additional effects of TTX on the mixed rod-cone ERG observed under mesopic conditions, implicating inner retinal involvement in those effects. After pharmacological blockade with CNQX, TTX still reduced b-wave amplitudes in cone-isolated ERGs indicating Na(v) channels in ON cone bipolar cells themselves augment b-wave amplitude and sensitivity. This augmentation was largest under dark-adapted conditions, and decreased with increasing background illumination, indicating effects of background illumination on Na(v) channel function. These findings indicate that activation of Na(v) channels in ON cone bipolar cells affects the b-wave of the rat ERG and must be considered when analysing results of ERG studies of retinal function. | | | 18388140
|
Aminoglycoside-induced degeneration of adult spiral ganglion neurons involves differential modulation of tyrosine kinase B and p75 neurotrophin receptor signaling. Justin Tan, Robert K Shepherd, Justin Tan, Robert K Shepherd, Justin Tan, Robert K Shepherd, Justin Tan, Robert K Shepherd The American journal of pathology
169
528-43
2005
Mostra il sommario
Aminoglycoside antibiotics induce sensorineural hearing loss by destroying hair cells of the organ of Corti, causing progressive secondary degeneration of primary auditory or spiral ganglion neurons (SGNs). Recent studies show that the p75 neurotrophin receptor (NTR) is aberrantly up-regulated under pathological conditions when the neurotrophin receptor tyrosine kinases (Trks) are presumptively down-regulated. We provide in vivo evidence demonstrating that degenerating SGNs induced an augmented p75NTR expression and a coincident reduction of TrkB expression in their peripheral processes. Nuclear transcription factors c-Jun and cyclic AMP response element-binding protein phosphorylated by p75NTR- and TrkB-activated signal pathways, respectively, also showed a corresponding differential modulation, suggesting an activation of apoptotic pathways, coupled to a loss of pro-survival neurotrophic support. Our findings identified brain-derived neurotrophic factor (BDNF) expression in hair and supporting cells of the adult cochlea, and its loss, specifically the mature form, would impair TrkB-induced signaling. The precursor of BDNF (pro-BDNF) is differentially cleaved in aminoglycoside-deafened cochleae, resulting in a predominant up-regulation of a truncated form of pro-BDNF, which colocalized with p75NTR-expressing SGN fibers. Together, these data suggest that an antagonistic interplay of p75NTR and TrkB receptor signaling, possibly modulated by selective BDNF processing, mediates SGN death in vivo. Testo completo dell'articolo | | | 16877354
|
Effects of spinal nerve ligation on immunohistochemically identified neurons in the L4 and L5 dorsal root ganglia of the rat. Hammond, Donna L, et al. J. Comp. Neurol., 475: 575-89 (2004)
2004
| | | 15236238
|
Adeno-associated viral transfer of opioid receptor gene to primary sensory neurons: a strategy to increase opioid antinociception. Xu, Y, et al. Proc. Natl. Acad. Sci. U.S.A., 100: 6204-9 (2003)
2003
Mostra il sommario
To develop a genetic approach for the treatment of pain, we introduced a recombinant adeno-associated viral (rAAV) vector containing the cDNA for the mu-opioid receptor (muOR) into primary afferent neurons in dorsal root ganglia (DRGs) of rats, which resulted in a long-lasting (>6 months) increase in muOR expression in DRG neurons. The increase greatly potentiated the antinociceptive effects of morphine in rAAV-muOR-infected rats with and without inflammation. Perforated patch recordings indicated that the efficacy and potency of opioid inhibition of voltage-dependent Ca(2+) channels were enhanced in infected neurons, which may underlie the increase in opiate efficacy. These data suggest that transfer of opioid receptor genes into DRG cells with rAAV vectors may offer a new therapeutic strategy for pain management. | Immunoblotting (Western) | Rat | 12719538
|