Activin A inhibits BMP-signaling by binding ACVR2A and ACVR2B. Olsen, OE; Wader, KF; Hella, H; Mylin, AK; Turesson, I; Nesthus, I; Waage, A; Sundan, A; Holien, T Cell communication and signaling : CCS
13
27
2015
Afficher le résumé
Activins are members of the TGF-β family of ligands that have multiple biological functions in embryonic stem cells as well as in differentiated tissue. Serum levels of activin A were found to be elevated in pathological conditions such as cachexia, osteoporosis and cancer. Signaling by activin A through canonical ALK4-ACVR2 receptor complexes activates the transcription factors SMAD2 and SMAD3. Activin A has a strong affinity to type 2 receptors, a feature that they share with some of the bone morphogenetic proteins (BMPs). Activin A is also elevated in myeloma patients with advanced disease and is involved in myeloma bone disease.In this study we investigated effects of activin A binding to receptors that are shared with BMPs using myeloma cell lines with well-characterized BMP-receptor expression and responses. Activin A antagonized BMP-6 and BMP-9, but not BMP-2 and BMP-4. Activin A was able to counteract BMPs that signal through the type 2 receptors ACVR2A and ACVR2B in combination with ALK2, but not BMPs that signal through BMPR2 in combination with ALK3 and ALK6.We propose that one important way that activin A regulates cell behavior is by antagonizing BMP-ACVR2A/ACVR2B/ALK2 signaling. | | 26047946
|
Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Aspalter, IM; Gordon, E; Dubrac, A; Ragab, A; Narloch, J; Vizán, P; Geudens, I; Collins, RT; Franco, CA; Abrahams, CL; Thurston, G; Fruttiger, M; Rosewell, I; Eichmann, A; Gerhardt, H Nature communications
6
7264
2015
Afficher le résumé
Sprouting angiogenesis drives blood vessel growth in healthy and diseased tissues. Vegf and Dll4/Notch signalling cooperate in a negative feedback loop that specifies endothelial tip and stalk cells to ensure adequate vessel branching and function. Current concepts posit that endothelial cells default to the tip-cell phenotype when Notch is inactive. Here we identify instead that the stalk-cell phenotype needs to be actively repressed to allow tip-cell formation. We show this is a key endothelial function of neuropilin-1 (Nrp1), which suppresses the stalk-cell phenotype by limiting Smad2/3 activation through Alk1 and Alk5. Notch downregulates Nrp1, thus relieving the inhibition of Alk1 and Alk5, thereby driving stalk-cell behaviour. Conceptually, our work shows that the heterogeneity between neighbouring endothelial cells established by the lateral feedback loop of Dll4/Notch utilizes Nrp1 levels as the pivot, which in turn establishes differential responsiveness to TGF-β/BMP signalling. | | 26081042
|
The ventral to dorsal BMP activity gradient in the early zebrafish embryo is determined by graded expression of BMP ligands. Ramel, MC; Hill, CS Developmental biology
378
170-82
2013
Afficher le résumé
In the early zebrafish embryo, a ventral to dorsal gradient of bone morphogenetic protein (BMP) activity is established, which is essential for the specification of cell fates along this axis. To visualise and mechanistically determine how this BMP activity gradient forms, we have used a transgenic zebrafish line that expresses monomeric red fluorescent protein (mRFP) under the control of well-characterised BMP responsive elements. We demonstrate that mRFP expression in this line faithfully reports BMP and GDF signalling at both early and late stages of development. Taking advantage of the unstable nature of mRFP transcripts, we use in situ hybridisation to reveal the dynamic spatio-temporal pattern of BMP activity and establish the timing and sequence of events that lead to the formation of the BMP activity gradient. We show that the BMP transcriptional activity gradient is established between 30% and 40% epiboly stages and that it is preceded by graded mRNA expression of the BMP ligands. Both Dharma and FGF signalling contribute to graded bmp transcription during these early stages and it is subsequently maintained through autocrine BMP signalling. We show that BMP2B protein is also expressed in a gradient as early as blastula stages, but do not find any evidence of diffusion of this BMP to generate the BMP transcriptional activity gradient. Thus, in contrast to diffusion/transport-based models of BMP gradient formation in Drosophila, our results indicate that the establishment of the BMP activity gradient in early zebrafish embryos is determined by graded expression of the BMP ligands. | Western Blotting | 23499658
|
Autocrine transforming growth factor-{beta}1 activation mediated by integrin {alpha}V{beta}3 regulates transcriptional expression of laminin-332 in Madin-Darby canine kidney epithelial cells. Moyano, JV; Greciano, PG; Buschmann, MM; Koch, M; Matlin, KS Molecular biology of the cell
21
3654-68
2009
Afficher le résumé
Laminin (LM)-332 is an extracellular matrix protein that plays a structural role in normal tissues and is also important in facilitating recovery of epithelia from injury. We have shown that expression of LM-332 is up-regulated during renal epithelial regeneration after ischemic injury, but the molecular signals that control expression are unknown. Here, we demonstrate that in Madin-Darby canine kidney (MDCK) epithelial cells LM-332 expression occurs only in subconfluent cultures and is turned-off after a polarized epithelium has formed. Addition of active transforming growth factor (TGF)-β1 to confluent MDCK monolayers is sufficient to induce transcription of the LM α3 gene and LM-332 protein expression via the TGF-β type I receptor (TβR-I) and the Smad2-Smad4 complex. Significantly, we show that expression of LM-332 in MDCK cells is an autocrine response to endogenous TGF-β1 secretion and activation mediated by integrin αVβ3 because neutralizing antibodies block LM-332 production in subconfluent cells. In confluent cells, latent TGF-β1 is secreted apically, whereas TβR-I and integrin αVβ3 are localized basolaterally. Disruption of the epithelial barrier by mechanical injury activates TGF-β1, leading to LM-332 expression. Together, our data suggest a novel mechanism for triggering the production of LM-332 after epithelial injury. Article en texte intégral | | 20844080
|
Cathepsin K expression and activity in canine osteosarcoma. J M Schmit,H C Pondenis,A M Barger,L B Borst,L D Garrett,J M Wypij,Z L Neumann,T M Fan Journal of veterinary internal medicine / American College of Veterinary Internal Medicine
26
2001
Afficher le résumé
Cathepsin K (CatK) is a lysosomal protease with collagenolytic activity, and its secretion by osteoclasts is responsible for degrading organic bone matrix. People with pathologic bone resorption have higher circulating CatK concentrations. | | 22171552
|