Catecholaminergic innervation of central and peripheral auditory circuitry varies with reproductive state in female midshipman fish, Porichthys notatus. Forlano, PM; Ghahramani, ZN; Monestime, CM; Kurochkin, P; Chernenko, A; Milkis, D PloS one
10
e0121914
2015
Afficher le résumé
In seasonal breeding vertebrates, hormone regulation of catecholamines, which include dopamine and noradrenaline, may function, in part, to modulate behavioral responses to conspecific vocalizations. However, natural seasonal changes in catecholamine innervation of auditory nuclei is largely unexplored, especially in the peripheral auditory system, where encoding of social acoustic stimuli is initiated. The plainfin midshipman fish, Porichthys notatus, has proven to be an excellent model to explore mechanisms underlying seasonal peripheral auditory plasticity related to reproductive social behavior. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the auditory system in midshipman. Most notably, dopaminergic neurons in the diencephalon have widespread projections to auditory circuitry including direct innervation of the saccule, the main endorgan of hearing, and the cholinergic octavolateralis efferent nucleus (OE) which also projects to the inner ear. Here, we tested the hypothesis that gravid, reproductive summer females show differential CA innervation of the auditory system compared to non-reproductive winter females. We utilized quantitative immunofluorescence to measure tyrosine hydroxylase immunoreactive (TH-ir) fiber density throughout central auditory nuclei and the sensory epithelium of the saccule. Reproductive females exhibited greater density of TH-ir innervation in two forebrain areas including the auditory thalamus and greater density of TH-ir on somata and dendrites of the OE. In contrast, non-reproductive females had greater numbers of TH-ir terminals in the saccule and greater TH-ir fiber density in a region of the auditory hindbrain as well as greater numbers of TH-ir neurons in the preoptic area. These data provide evidence that catecholamines may function, in part, to seasonally modulate the sensitivity of the inner ear and, in turn, the appropriate behavioral response to reproductive acoustic signals. | | | 25849450
|
Acute oral administration of low doses of methylphenidate targets calretinin neurons in the rat septal area. García-Avilés, Á; Albert-Gascó, H; Arnal-Vicente, I; Elhajj, E; Sanjuan-Arias, J; Sanchez-Perez, AM; Olucha-Bordonau, F Frontiers in neuroanatomy
9
33
2015
Afficher le résumé
Methylphenidate (MPD) is a commonly administered drug to treat children suffering from attention deficit hyperactivity disorder (ADHD). Alterations in septal driven hippocampal theta rhythm may underlie attention deficits observed in these patients. Amongst others, the septo-hippocampal connections have long been acknowledged to be important in preserving hippocampal function. Thus, we wanted to ascertain if MPD administration, which improves attention in patients, could affect septal areas connecting with hippocampus. We used low and orally administered MPD doses (1.3, 2.7 and 5 mg/Kg) to rats what mimics the dosage range in humans. In our model, we observed no effect when using 1.3 mg/Kg MPD; whereas 2.7 and 5 mg/Kg induced a significant increase in c-fos expression specifically in the medial septum (MS), an area intimately connected to the hippocampus. We analyzed dopaminergic areas such as nucleus accumbens and striatum, and found that only 5 mg/Kg induced c-fos levels increase. In these areas tyrosine hydroxylase correlated well with c-fos staining, whereas in the MS the sparse tyrosine hydroxylase fibers did not overlap with c-fos positive neurons. Double immunofluorescence of c-fos with neuronal markers in the septal area revealed that co-localization with choline acethyl transferase, parvalbumin, and calbindin with c-fos did not change with MPD treatment; whereas, calretinin and c-fos double labeled neurons increased after MPD administration. Altogether, these results suggest that low and acute doses of methylphenidate primary target specific populations of caltretinin medial septal neurons. | | | 25852493
|
Anatomical Location of the Mesencephalic Locomotor Region and Its Possible Role in Locomotion, Posture, Cataplexy, and Parkinsonism. Sherman, D; Fuller, PM; Marcus, J; Yu, J; Zhang, P; Chamberlin, NL; Saper, CB; Lu, J Frontiers in neurology
6
140
2015
Afficher le résumé
The mesencephalic (or midbrain) locomotor region (MLR) was first described in 1966 by Shik and colleagues, who demonstrated that electrical stimulation of this region induced locomotion in decerebrate (intercollicular transection) cats. The pedunculopontine tegmental nucleus (PPT) cholinergic neurons and midbrain extrapyramidal area (MEA) have been suggested to form the neuroanatomical basis for the MLR, but direct evidence for the role of these structures in locomotor behavior has been lacking. Here, we tested the hypothesis that the MLR is composed of non-cholinergic spinally projecting cells in the lateral pontine tegmentum. Our results showed that putative MLR neurons medial to the PPT and MEA in rats were non-cholinergic, glutamatergic, and express the orexin (hypocretin) type 2 receptors. Fos mapping correlated with motor behaviors revealed that the dorsal and ventral MLR are activated, respectively, in association with locomotion and an erect posture. Consistent with these findings, chemical stimulation of the dorsal MLR produced locomotion, whereas stimulation of the ventral MLR caused standing. Lesions of the MLR (dorsal and ventral regions together) resulted in cataplexy and episodic immobility of gait. Finally, trans-neuronal tracing with pseudorabies virus demonstrated disynaptic input to the MLR from the substantia nigra via the MEA. These findings offer a new perspective on the neuroanatomic basis of the MLR, and suggest that MLR dysfunction may contribute to the postural and gait abnormalities in Parkinsonism. | | | 26157418
|
Ldb1 is essential for development of Nkx2.1 lineage derived GABAergic and cholinergic neurons in the telencephalon. Zhao, Y; Flandin, P; Vogt, D; Blood, A; Hermesz, E; Westphal, H; Rubenstein, JL Developmental biology
385
94-106
2014
Afficher le résumé
The progenitor zones of the embryonic mouse ventral telencephalon give rise to GABAergic and cholinergic neurons. We have shown previously that two LIM-homeodomain (LIM-HD) transcription factors, Lhx6 and Lhx8, that are downstream of Nkx2.1, are critical for the development of telencephalic GABAergic and cholinergic neurons. Here we investigate the role of Ldb1, a nuclear protein that binds directly to all LIM-HD factors, in the development of these ventral telencephalon derived neurons. We show that Ldb1 is expressed in the Nkx2.1 cell lineage during embryonic development and in mature neurons. Conditional deletion of Ldb1 causes defects in the expression of a series of genes in the ventral telencephalon and severe impairment in the tangential migration of cortical interneurons from the ventral telencephalon. Similar to the phenotypes observed in Lhx6 or Lhx8 mutant mice, the Ldb1 conditional mutants show a reduction in the number of both GABAergic and cholinergic neurons in the telencephalon. Furthermore, our analysis reveals defects in the development of the parvalbumin-positive neurons in the globus pallidus and striatum of the Ldb1 mutants. These results provide evidence that Ldb1 plays an essential role as a transcription co-regulator of Lhx6 and Lhx8 in the control of mammalian telencephalon development. | | | 24157949
|
Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia. Qiu, MH; Chen, MC; Huang, ZL; Lu, J Frontiers in neuroanatomy
8
13
2014
Afficher le résumé
The cerebral cortex and basal ganglia (BG) form a neural circuit that is disrupted in disorders such as Parkinson's disease. We found that neuronal activity (c-Fos) in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave electroencephalography but hyperactive motor behaviors. Atropine blocked c-Fos expression in the cortex and BG, despite high c-Fos expression in the sub-cortical arousal neuronal groups and thalamus, indicating that cortical activity is required for BG activation. To identify which glutamate receptors in the BG that mediate cortical inputs, we injected ketamine [N-methyl-d-aspartate (NMDA) receptor antagonist] and 6-cyano-nitroquinoxaline-2, 3-dione (CNQX, a non-NMDA receptor antagonist). Systemic ketamine and CNQX administration revealed that NMDA receptors mediated subthalamic nucleus (STN) input to internal globus pallidus (GPi) and substantia nigra pars reticulata (SNr), while non-NMDA receptor mediated cortical input to the STN. Both types of glutamate receptors were involved in mediating cortical input to the striatum. Dorsal striatal (caudoputamen, CPu) dopamine depletion by 6-hydroxydopamine resulted in reduced activity of the CPu, globus pallidus externa (GPe), and STN but increased activity of the GPi, SNr, and putative layer V neurons in the motor cortex. Our results reveal that the cortical activity is necessary for BG activity and clarifies the pathways and properties of the BG-cortical network and their putative role in the pathophysiology of BG disorders. | | | 24723855
|
A genetic and computational approach to structurally classify neuronal types. Sümbül, U; Song, S; McCulloch, K; Becker, M; Lin, B; Sanes, JR; Masland, RH; Seung, HS Nature communications
5
3512
2014
Afficher le résumé
The importance of cell types in understanding brain function is widely appreciated but only a tiny fraction of neuronal diversity has been catalogued. Here we exploit recent progress in genetic definition of cell types in an objective structural approach to neuronal classification. The approach is based on highly accurate quantification of dendritic arbor position relative to neurites of other cells. We test the method on a population of 363 mouse retinal ganglion cells. For each cell, we determine the spatial distribution of the dendritic arbors, or arbor density, with reference to arbors of an abundant, well-defined interneuronal type. The arbor densities are sorted into a number of clusters that is set by comparison with several molecularly defined cell types. The algorithm reproduces the genetic classes that are pure types, and detects six newly clustered cell types that await genetic definition. | | | 24662602
|
Expression of mu opioid receptor in dorsal diencephalic conduction system: new insights for the medial habenula. Gardon, O; Faget, L; Chu Sin Chung, P; Matifas, A; Massotte, D; Kieffer, BL Neuroscience
277
595-609
2014
Afficher le résumé
The habenular complex, encompassing medial (MHb) and lateral (LHb) divisions, is a highly conserved epithalamic structure involved in the dorsal diencephalic conduction system (DDC). These brain nuclei regulate information flow between the limbic forebrain and the mid- and hindbrain, integrating cognitive with emotional and sensory processes. The MHb is also one of the strongest expression sites for mu opioid receptors (MORs), which mediate analgesic and rewarding properties of opiates. At present however, anatomical distribution and function of these receptors have been poorly studied in MHb pathways. Here we took advantage of a newly generated MOR-mcherry knock-in mouse line to characterize MOR expression sites in the DDC. MOR-mcherry fluorescent signal is weak in the LHb, but strong expression is visible in the MHb, fasciculus retroflexus (fr) and interpeduncular nucleus (IPN), indicating that MOR is mainly present in the MHb-IPN pathway. MOR-mcherry cell bodies are detected both in basolateral and apical parts of MHb, where the receptor co-localizes with cholinergic and substance P (SP) neurons, respectively, representing two main MHb neuronal populations. MOR-mcherry is expressed in most MHb-SP neurons, and is present in only a subpopulation of MHb-cholinergic neurons. Intense diffuse fluorescence detected in lateral and rostral parts of the IPN further suggests that MOR-mcherry is transported to terminals of these SP and cholinergic neurons. Finally, MOR-mcherry is present in septal regions projecting to the MHb, and in neurons of the central and intermediate IPN. Together, this study describes MOR expression in several compartments of the MHb-IPN circuitry. The remarkably high MOR density in the MHb-IPN pathway suggests that these receptors are in a unique position to mediate analgesic, autonomic and reward responses. | | | 25086313
|
ZPK/DLK and MKK4 form the critical gateway to axotomy-induced motoneuron death in neonates. Itoh, T; Horiuchi, M; Ikeda, RH; Xu, J; Bannerman, P; Pleasure, D; Penninger, JM; Tournier, C; Itoh, A The Journal of neuroscience : the official journal of the Society for Neuroscience
34
10729-42
2014
Afficher le résumé
Motoneuron death after transection of the axons (axotomy) in neonates is believed to share the same mechanistic bases as naturally occurring programmed cell death during development. The c-Jun N-terminal kinase pathway is activated in both forms of motoneuron death, but it remains unknown to what extent these two forms of motoneuron death depend on this pathway and which upstream kinases are involved. We found that numbers of facial motoneurons are doubled in neonatal mice deficient in either ZPK/DLK (zipper protein kinase, also known as dual leucine zipper kinase), a mitogen-activated protein kinase kinase kinase, or in MKK4/MAP2K4, a mitogen-activated protein kinase kinase directly downstream of ZPK/DLK, and that the facial motoneurons in those mutant mice are completely resistant to axotomy-induced death. Conditional deletion of MKK4/MAP2K4 in neurons further suggested that ZPK/DLK and MKK4/MAP2K4-dependent mechanisms underlying axotomy-induced death are motoneuron autonomous. Nevertheless, quantitative analysis of facial motoneurons during embryogenesis revealed that both ZPK/DLK and MKK4/MAP2K4-dependent and -independent mechanisms contribute to developmental elimination of excess motoneurons. In contrast to MKK4/MAP2K4, mice lacking MKK7/MAP2K7, another mitogen-activated protein kinase kinase directly downstream of ZPK/DLK, conditionally in neurons did not have excess facial motoneurons. However, some MKK7/MAP2K7-deficient facial motoneurons were resistant to axotomy-induced death, indicating a synergistic effect of MKK7/MAP2K7 on axotomy-induced death of these facial motoneurons. Together, our study provides compelling evidence for the pivotal roles of the ZPK/DLK and MKK4/MAP2K4-dependent mechanism in axotomy-induced motoneuron death in neonates and also demonstrates that axotomy-induced motoneuron death is not identical to developmental motoneuron death with respect to the involvement of ZPK/DLK, MKK4/MAP2K4 and MKK7/MAP2K7. | | | 25100604
|
Perineuronal and perisynaptic extracellular matrix in the human spinal cord. Jäger, C, et al. Neuroscience, 238: 168-84 (2013)
2013
Afficher le résumé
Extracellular matrix (ECM) forms an active interface around neurons of the central nervous system (CNS). Whilst the components, chemical heterogeneity and cellular recruitment of this intercellular assembly in various parts of the brain have been discussed in detail, the spinal cord received limited attention in this context. This is in sharp contrast to its clinical relevance since the overall role of ECM especially that of its chondroitin sulphate-based proteoglycan components (CSPGs) was repeatedly addressed in neuropathology, regeneration, CNS repair and therapy models. Based on two post-mortem human specimen, this study gives the first and detailed description of major ECM components of the human spinal cord. Immunohistochemical investigations were restricted to the systematic mapping of aggrecan, brevican, proteoglycan link-protein as well as tenascin-R and hyaluronan containing matrices in the whole cranio-caudal dimension of the human spinal cord. Other proteoglycans like versican, neurocan and NG2 were exemplarily investigated in restricted areas. We show the overall presence of tenascin-R and hyaluronan in both white and grey matters whereas aggrecan, proteoglycan link-protein and brevican were restricted to the grey matter. In the grey matter, the ECM formed aggrecan-based perineuronal nets in the ventral and lateral horns but established single perisynaptic assemblies, axonal coats (ACs), containing link-protein and brevican in all regions except of the Lissauer's zone. Intersegmental differences were reflected in the appearance of segment-specific nuclei but not in overall matrix distribution pattern or chemical heterogeneity. Perineuronal nets were typically associated with long-range projection neurons including cholinergic ventral horn motorneurons or dorsal spinocerebellar tract neurons of the Clarke-Stilling nuclei. Multiple immunolabelling revealed that nociceptive afferents were devoid of individual matrix assemblies unlike glycinergic or GABAergic synapses. The detailed description of ECM distribution in the human spinal cord shall support clinical approaches in injury and regenerative therapy. | | | 23428622
|
Role of inhibition in respiratory pattern generation. Janczewski, WA; Tashima, A; Hsu, P; Cui, Y; Feldman, JL The Journal of neuroscience : the official journal of the Society for Neuroscience
33
5454-65
2013
Afficher le résumé
Postsynaptic inhibition is a key element of neural circuits underlying behavior, with 20-50% of all mammalian (nongranule) neurons considered inhibitory. For rhythmic movements in mammals, e.g., walking, swimming, suckling, chewing, and breathing, inhibition is often hypothesized to play an essential rhythmogenic role. Here we study the role of fast synaptic inhibitory neurotransmission in the generation of breathing pattern by blocking GABA(A) and glycine receptors in the preBötzinger complex (preBötC), a site essential for generation of normal breathing pattern, and in the neighboring Bötzinger complex (BötC). The breathing rhythm continued following this blockade, but the lung inflation-induced Breuer-Hering inspiratory inhibitory reflex was suppressed. The antagonists were efficacious, as this blockade abolished the profound effects of the exogenously applied GABA(A) receptor agonist muscimol or glycine, either of which under control conditions stopped breathing in vagus-intact or vagotomized, anesthetized, spontaneously breathing adult rats. In vagotomized rats, GABA(A)ergic and glycinergic antagonists had little, if any, effect on rhythm. The effect in vagus-intact rats was to slow the rhythm to a pace equivalent to that seen after suppression of the aforementioned Breuer-Hering inflation reflex. We conclude that postsynaptic inhibition within the preBötC and BötC is not essential for generation of normal respiratory rhythm in intact mammals. We suggest the primary role of inhibition is in shaping the pattern of respiratory motor output, assuring its stability, and in mediating reflex or volitional apnea, but not in the generation of rhythm per se. | Immunohistochemistry | | 23536061
|