Le fait de fermer ne sauvegardera pas votre configuration à moins que vous n'ajoutiez l'article à votre Panier d'achat ou à vos Favoris.
Cliquer sur OK pour fermer l'outil MILLIPLEX® MAP ou sur Annuler pour retourner à votre sélection.
Choisissez des Panels configurables & des Kits préconfigurés - OU - des MAPmate™ de signalisation cellulaire
Concevez vos kits MILLIPLEX® MAP et obtenez leur prix.
Panels configurables & Kits préconfigurés
Notre large gamme est constituée de panels multiplex qui vous permettent de choisir, au sein d'un panel, les analytes qui répondent le mieux à vos besoins. Sur un autre onglet, vous pouvez choisir un format cytokine préconfiguré ou un kit Simplex.
Kits de signalisation cellulaire & MAPmate™
Choisissez des kits préconfigurés qui permettent d'explorer l'ensemble des voies ou des processus. Ou concevez vos propres kits en choisissant des Simplex MAPmate™ et en suivant les instructions fournies.
Les MAPmate™ suivants ne peuvent pas être utilisés ensemble : -des MAPmate™ qui nécessitent des tampons différents -des paires de MAPmate™ totaux et phospho-spécifiques, par ex. GSK3β total et GSK3β (Ser 9) -des MAPmate™ PanTyr et spécifiques d'un site, par ex. Récepteur Phospho-EGF et phospho-STAT1 (Tyr701) -Plus d'un phospho-MAPmate™ pour une seule cible (Akt, STAT3). -GAPDH et β-Tubuline ne peuvent pas être utilisés avec les kits ou les MAPmate™ contenant panTyr.
.
Référence
Guide d'achat
Qté
Liste
Cet article a été ajouté à vos favoris.
Sélectionner une espèce, un type de panel, un kit ou un type d'échantillon
Pour commencer à concevoir votre kit MILLIPLEX® MAP, sélectionnez une espèce, un type de panel ou un kit d'intérêt.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
Cet article a été ajouté à vos favoris.
Espèce
Type de panel
Kit sélectionné
Qté
Référence
Guide d'achat
Qté
Prix tarif
96-Well Plate
Qté
Référence
Guide d'achat
Qté
Prix tarif
Ajouter des réactifs supplémentaires (Un kit "Buffer and Detection Kit" est nécessaire pour une utilisation avec les MAPmate™)
Qté
Référence
Guide d'achat
Qté
Prix tarif
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Option de gain de place Nos clients qui commandent plusieurs kits peuvent choisir d'économiser de l'espace de stockage en éliminant l'emballage de chaque kit et de recevoir les composants de leur essai multiplex conditionnés sous poches en plastique pour un stockage plus compact.
Cet article a été ajouté à vos favoris.
Ce produit a été ajouté à votre panier.
Vous pouvez maintenant concevoir un autre kit personnalisé, choisir un kit pré-configuré, régler vos achats ou fermer l'outil de commande.
Today, all the major microscope manufacturers offer devices built for live-cell imaging. Many of these systems come complete with computerized incubation chambers and microscope stages that allow multilayered integration of key parameters:
The stages, when combined with integrated but often proprietary microscope-controlling and image-acquisition software are beginning to allow researchers some control over the general cell culture environment. This limited environmental control allows them to overcome at least some of extrinsic control elements arising in live cell analysis, but there are issues.
As good as today’s modern cell culture imaging microscope systems are today, many of these devices are extremely expensive and while they offer some basic controls over temperature, humidity, and nutrient, their ability to precisely control the actual microenvironment of the cells is limited.
Controlling Environment vs Microenvironment
Gaining control of cellular behavior, while still having the ability to visualize and track living cells in culture is necessary to have precise, dynamic, environmental control of the cellular microenvironment. Tight and timely control over multiple culture parameters while constantly monitoring culture status would allow for far better manipulation of the microenvironment and would seem to be the experimental ideal.
Microfluidic Control of Assay Environments The science of Microfluidics started in the printing and inkjet arenas but now as found applications in every major biological and physical science arena. Biologists are examining microfluidic solutions across a wide arena of specialties, including drug discovery and drug delivery, genetics and genetic sequencing challenges such as the typing of single nucleotide polymorphisms, to proteomics, and even to the newly emerging field termed “lab-on-a-chip” solution systems where several different laboratory functions are performed simultaneously.
Microfluidic technology has the potential to achieve the following:
Exploration of single cell behaviors and interactions
Adaptable to single molecule biophysics and experimentation
Miniaturization and portability of chemical and biological assays
Exquisite control & manipulation of micro environments and fluid controlled experiments
Cost savings through minimal reagent use
Potential for massively-parallel and high-throughput biochemical analyses
High adaptability to robotic and instrumental control and data collection
Biological Microfluidics
Biological microfluidics is an emerging multidisciplinary science that intersects the fields of biotechnology, biochemistry, chemistry, nanotechnology and physics to create devices that control the cell culture microenvironment. Diffusion in a microfluidic environment can be tightly controlled, making addition and removal of cell culture chamber materials (extrinsic factors) much easier.
Biological microfluidic systems work because such microfluidic environments are sub-millimeter (channel diameters of around 100 nanometers to several hundred micrometers are common). At that size, the microfluidic behavior of fluids changes in comparison to what we observe in the macro scale. For instance, in a microfluidic environment a fluid’s Reynolds number (a measure of its viscosity) often drops to very low or near zero. This means that fluids do not mix; that diffusion is halted or vastly decreased likely because of the molecular tension of the molecules within the fluid itself. These microfluidic devices and their channels can be passively or actively controlled and continuous or discontinuous in fluid dynamics with additional versions being developed every year.
See how microfluidics has been applied to controlling cell culture microenvironments using the CellASIC® ONIX platform.
In Vivo-Like Cell Culture
Microfluidic systems provide many advantages for live cell imaging, including improved cell culture micro-environments. The tight control of fluid flows assists in creating and maintaining more predictive cell cultures, including mixed cultures, 3D and 4D cultures. Current strategies for 3D cell culture include growing cells in hanging drops, in a natural or synthetic 3D matrix on biodegradable polymers in a cross-linked hydrogel or in porous synthetic scaffolds. Even in these advanced platforms, if subjected to static conditions of gas, nutrient medium and waste buildup, they are limited by the inefficient mass transport between the inside and outside of the 3D cell structures. Microfluidic control of microenvironments is being used increasingly to overcome the challenges of mass transport in 3D culture.
Three-dimensional culture and assessment of drug-induced cell death using the CellASIC® ONIX Microfluidic Platform