Wenn Sie das Fenster schließen, wird Ihre Konfiguration nicht gespeichert, es sei denn, Sie haben Ihren Artikel in die Bestellung aufgenommen oder zu Ihren Favoriten hinzugefügt.
Klicken Sie auf OK, um das MILLIPLEX® MAP-Tool zu schließen oder auf Abbrechen, um zu Ihrer Auswahl zurückzukehren.
Wählen Sie konfigurierbare Panels & Premixed-Kits - ODER - Kits für die zelluläre Signaltransduktion & MAPmates™
Konfigurieren Sie Ihre MILLIPLEX® MAP-Kits und lassen sich den Preis anzeigen.
Konfigurierbare Panels & Premixed-Kits
Unser breites Angebot enthält Multiplex-Panels, für die Sie die Analyten auswählen können, die am besten für Ihre Anwendung geeignet sind. Unter einem separaten Register können Sie das Premixed-Cytokin-Format oder ein Singleplex-Kit wählen.
Kits für die zelluläre Signaltransduktion & MAPmates™
Wählen Sie gebrauchsfertige Kits zur Erforschung gesamter Signalwege oder Prozesse. Oder konfigurieren Sie Ihre eigenen Kits mit Singleplex MAPmates™.
Die folgenden MAPmates™ sollten nicht zusammen analysiert werden: -MAPmates™, die einen unterschiedlichen Assaypuffer erfordern. -Phosphospezifische und MAPmate™ Gesamtkombinationen wie Gesamt-GSK3β und Gesamt-GSK3β (Ser 9). -PanTyr und locusspezifische MAPmates™, z.B. Phospho-EGF-Rezeptor und Phospho-STAT1 (Tyr701). -Mehr als 1 Phospho-MAPmate™ für ein einziges Target (Akt, STAT3). -GAPDH und β-Tubulin können nicht mit Kits oder MAPmates™, die panTyr enthalten, analysiert werden.
.
Bestellnummer
Bestellinformationen
St./Pkg.
Liste
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Wählen Sie bitte Spezies, Panelart, Kit oder Probenart
Um Ihr MILLIPLEX® MAP-Kit zu konfigurieren, wählen Sie zunächst eine Spezies, eine Panelart und/oder ein Kit.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Spezies
Panelart
Gewähltes Kit
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
96-Well Plate
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
Weitere Reagenzien hinzufügen (MAPmates erfordern die Verwendung eines Puffer- und Detektionskits)
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Platzsparende Option Kunden, die mehrere Kits kaufen, können ihre Multiplex-Assaykomponenten in Kunststoffbeuteln anstelle von Packungen erhalten, um eine kompaktere Lagerung zu ermöglichen.
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Das Produkt wurde in Ihre Bestellung aufgenommen
Sie können nun ein weiteres Kit konfigurieren, ein Premixed-Kit wählen, zur Kasse gehen oder das Bestell-Tool schließen.
SCR508
Sigma-AldrichTAT-CRE Recombinase
TAT-CRE Recombinase is a recombinant cell-permeant fusion cre-recombinase protein consisting of TAT sequence, a nuclear localization sequence (NLS) and it is known to catalyze the site specific recombination event between two loxP DNA sites.
More>>TAT-CRE Recombinase is a recombinant cell-permeant fusion cre-recombinase protein consisting of TAT sequence, a nuclear localization sequence (NLS) and it is known to catalyze the site specific recombination event between two loxP DNA sites. Less<<
TAT-CRE Recombinase: SDB (Sicherheitsdatenblätter), Analysenzertifikate und Qualitätszertifikate, Dossiers, Broschüren und andere verfügbare Dokumente.
Cre Recombinase is an enzyme from bacteriophage P1 that catalyzes the site-specific recombination between two DNA recognition sites termed loxP sites. The LoxP recognition site consists of two 13 bp inverted repeats flanking a 8 bp spacer region. Because the Cre gene and loxP sites are not native to the genomes of most species, LoxP sites can be engineered and introduced into target cells and thus used as a means to precisely control the expression of genes in vitro (i.e. cultured cells) and in vivo (i.e. animal models).
• If LoxP sites are located on different chromosomes, Cre recombinase will mediate a chromosomal translocation. • If LoxP sites are oriented in the opposite direction, Cre recombinase will mediate an inversion of the floxed segment. • If LoxP sites are oriented in the same direction, Cre recombinase will mediate a deletion of the floxed segment.
In this way, placement of the LoxP sites allows genes to be activated, repressed or exchanged for other genes.
EMD Millipore’s TAT-CRE Recombinase is a recombinant cell-permeant fusion protein consisting of a basic protein translocation peptide derived from HIV-TAT (TAT), a nuclear localization sequence (NLS), the Cre protein and an N-terminal histidine tag (H6) for efficient purification of the protein from E. coli.
EMD Millipore’s TAT-CRE Recombinase has been shown to effectively excise STEMCCA viral transgenes from both Human and Mouse IPS cells.
References
Product Information
Presentation
Recombinant protein is supplied in buffer containing 50% glycerol (v/v) 500 mM NaCl and 20 mM HEPES at pH 7.4
Activity
A standard of 100 Units is defined as the amount of TAT-CRE (ug) in 1.0 mL of tissue culture medium that is required to induce 50% GFP expression in a HEK293T loxp reporter cell line assay.
TAT-CRE Recombinase is a recombinant cell-permeant fusion cre-recombinase protein consisting of TAT sequence, a nuclear localization sequence (NLS) and it is known to catalyze the site specific recombination event between two loxP DNA sites.
Key Applications
Cell Culture
Stem Cell Culture
Application Notes
EMD Millipore has developed a cell-permeant TAT-CRE Recombinase fusion protein which can be directly delivered to mammalian cells and results in high recombination efficiencies (75 – 100% in mouse and ~ 60% in human cells). TAT-CRE readily translocates to mammalian cells and can catalyze highly efficient recombination. The dose and timing of Cre exposure can be precisely controlled thus allowing for the careful titration of Cre activity.
Biological Information
Host
E. coli
Physicochemical Information
Activity
A standard of 100 Units is defined as the amount of TAT-CRE (ug) in 1.0 mL of tissue culture medium that is required to induce 50% GFP expression in a HEK293T loxp reporter cell line assay.
Dimensions
Materials Information
Toxicological Information
Safety Information according to GHS
Safety Information
Product Usage Statements
Quality Assurance
Each lot of TAT-CRE Recombinase protein is rigorously quality control tested for the following parameters: • Purity: single band around 41 kDa with greater than 70% protein purity on an SDS-PAGE gel • Functional activity: mediates recombination of LoxP-modified alleles in a HEK293T- Cre reporter cell line • Endotoxin levels: less than 1 EU/ug protein
Usage Statement
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
Storage and Shipping Information
Storage Conditions
Stable for 3 months from date of receipt when stored at -20°C or -80°C. Upon first thaw, centrifuge the vial and gently mix the solution. Aliquot into smaller working volumes and freeze at -20°C or -80°C. Before use, dilute TAT-CRE to the appropriate concentration with culture medium and filter through a 0.2um low protein binding syringe filter (Millipore Cat. No. SLGV 033RS or SLGV013 SL).
Excision of viral reprogramming cassettes by Cre protein transduction enables rapid, robust and efficient derivation of transgene-free human induced pluripotent stem cells. Kadari, Asifiqbal, et al. Stem Cell Res Ther, 5: 47 (2014)
2014
Integrating viruses represent robust tools for cellular reprogramming, however, the presence of viral transgenes in induced pluripotent stem cells (iPSCs) is deleterious as it holds the risk of insertional mutagenesis leading to malignant transformation. Here, we combine the robustness of lentiviral reprogramming with the efficacy of Cre recombinase protein transduction to derive iPSCs devoid of transgenes. By genome-wide analysis and targeted differentiation towards the cardiomyocyte lineage, we show that transgene-free iPSCs are superior to iPSCs before Cre transduction. Our study provides a simple, rapid and robust protocol for the generation of clinical-grade iPSCs suitable for disease modeling, tissue engineering and cell replacement therapies.
Embryonic stem (ES) cells have become a major focus of scientific interest both as a potential donor source for regenerative medicine and as a model system for tissue development and pathobiology. Tight and efficient methods for genetic engineering are required to exploit ES cells as disease models and to generate specific somatic phenotypes by lineage selection or instruction. In 1990s, the application of site-specific recombinases (SSRs) such as Cre has revolutionized mammalian genetics by providing a reliable and efficient means to delete, insert, invert, or exchange chromosomal DNA in a conditional manner. Despite these significant advances, the available technology still suffers from limitations, including unwanted side effects elicited by the random integration of Cre expression vectors and leak activity of inducible or presumptive cell type-specific Cre expression systems. These challenges can be met by combining the Cre/loxP recombination system with direct intracellular delivery of Cre by protein transduction, thus enabling rapid and highly efficient conditional mutagenesis in ES cells and ES cell-derived somatic progeny. Modified recombinant variants of Cre protein induce recombination in virtually 100% of human ES (hES) and mouse ES (mES) cells. Here, we present methods for generating purified transducible Cre protein from Escherichia coli and its transduction into ES cells and their neural progeny.
Stage-specific conditional mutagenesis in mouse embryonic stem cell-derived neural cells and postmitotic neurons by direct delivery of biologically active Cre recombinase. Haupt, Simone, et al. Stem Cells, 25: 181-8 (2007)
2007
Conditional mutagenesis using Cre/loxP recombination is a powerful tool to investigate genes involved in neural development and function. However, the efficient delivery of biologically active Cre recombinase to neural cells, particularly to postmitotic neurons, represents a limiting factor. In this study, we devised a protocol enabling highly efficient conditional mutagenesis in ESC-derived neural progeny. Using a stepwise in vitro differentiation paradigm, we demonstrate that recombinant cell-permeable Cre protein can be used to efficiently induce recombination at defined stages of neural differentiation. Recombination rates of more than 90% were achieved in multipotent pan-neural and glial precursors derived from the Z/EG reporter mouse ESC line, in which Cre recombination activates enhanced green fluorescent proteinexpression. Recombined precursor cells displayed a normal phenotype and were able to differentiate into neurons and/or glial cells, indicating that Cre treatment has no overt side effects on proliferation and neural differentiation. Our data further demonstrate that recombination via Cre protein transduction is not restricted to dividing cells but can even be applied to postmitotic neurons. The ability to conduct Cre/loxP recombination at defined stages of stem cell differentiation in an expression-independent manner provides new prospects for studying the role of individual genes under stringent temporal control.
The biomedical application of human embryonic stem (hES) cells will increasingly depend on the availability of technologies for highly controlled genetic modification. In mouse genetics, conditional mutagenesis using site-specific recombinases has become an invaluable tool for gain- and loss-of-function studies. Here we report highly efficient Cre-mediated recombination of a chromosomally integrated loxP-modified allele in hES cells and hES cell-derived neural precursors by protein transduction. Recombinant modified Cre recombinase protein translocates into the cytoplasm and nucleus of hES cells and subsequently induces recombination in virtually 100% of the cells. Cre-transduced hES cells maintain the expression of pluripotency markers as well as the capability of differentiating into derivatives of all three germ layers in vitro and in vivo. We expect this technology to provide an important technical basis for analyzing complex genetic networks underlying human development as well as generating highly purified, transplantable hES cell-derived cells for regenerative medicine.