Delivery of therapeutic siRNA to the lung endothelium via novel Lipoplex formulation DACC. Fehring, V; Schaeper, U; Ahrens, K; Santel, A; Keil, O; Eisermann, M; Giese, K; Kaufmann, J Molecular therapy : the journal of the American Society of Gene Therapy
22
811-20
2014
Abstract anzeigen
Posttranscriptional gene silencing by RNA interference can be therapeutically exploited to inhibit pathophysiological gene expression. However, in contrast to the established effectiveness of RNAi in vitro, safe and effective delivery of siRNAs to specific organs and cell types in vivo remains the major hurdle. Here, we report the development and in vivo characterization of a novel siRNA delivery system (DACC lipoplex) suitable for modulating target gene expression specifically in the lung vasculature. Systemic administration of DACC in mice delivered siRNA cargo functionally to the lung pulmonary endothelium. A single dose of DACC lipoplexes administered by bolus injection or by infusion was sufficient to specifically silence genes expressed in pulmonary endothelial cells such as CD31, Tie-2, VE-cadherin, or BMP-R2. When tested in a mouse model for lung cancer, repeated treatment with DACC/siRNA(CD31) reduced formation of lung metastases and increased life span in a mouse model of experimental lung metastasis. | Western Blotting | 24390281
|
The flow dependency of Tie2 expression in endotoxemia. Kurniati, Neng F, et al. Intensive Care Med, (2013)
2013
Abstract anzeigen
RATIONALE: Tie2 is predominantly expressed by endothelial cells and is involved in vascular integrity control during sepsis. Changes in Tie2 expression during sepsis development may contribute to microvascular dysfunction. Understanding the kinetics and molecular basis of these changes may assist in the development of therapeutic intervention to counteract microvascular dysfunction. OBJECTIVE: To investigate the molecular mechanisms underlying the changes in Tie2 expression upon lipopolysaccharide (LPS) challenge. METHODS AND RESULTS: Studies were performed in LPS and pro-inflammatory cytokine challenged mice as well as in mice subjected to hemorrhagic shock, primary endothelial cells were used for in vitro experiments in static and flow conditions. Eight hours after LPS challenge, Tie2 mRNA loss was observed in all major organs, while loss of Tie2 protein was predominantly observed in lungs and kidneys, in the capillaries. A similar loss could be induced by secondary cytokines TNF-α and IL-1β. Ang2 protein administration did not affect Tie2 protein expression nor was Tie2 protein rescued in LPS-challenged Ang2-deficient mice, excluding a major role for Ang2 in Tie2 down regulation. In vitro, endothelial loss of Tie2 was observed upon lowering of shear stress, not upon LPS and TNF-α stimulation, suggesting that inflammation related haemodynamic changes play a major role in loss of Tie2 in vivo, as also hemorrhagic shock induced Tie2 mRNA loss. In vitro, this loss was partially counteracted by pre-incubation with a pharmacologically NF-кB inhibitor (BAY11-7082), an effect further substantiated in vivo by pre-treatment of mice with the NF-кB inhibitor prior to the inflammatory challenge. CONCLUSIONS: Microvascular bed specific loss of Tie2 mRNA and protein in vivo upon LPS, TNFα, IL-1β challenge, as well as in response to hemorrhagic shock, is likely an indirect effect caused by a change in endothelial shear stress. This loss of Tie2 mRNA, but not Tie2 protein, induced by TNFα exposure was shown to be controlled by NF-кB signaling. Drugs aiming at restoring vascular integrity in sepsis could focus on preventing the Tie2 loss. | | 23563632
|
Activation of hypoxia response in endothelial cells contributes to ischemic cardioprotection. Kerkelä, R; Karsikas, S; Szabo, Z; Serpi, R; Magga, J; Gao, E; Alitalo, K; Anisimov, A; Sormunen, R; Pietilä, I; Vainio, L; Koch, WJ; Kivirikko, KI; Myllyharju, J; Koivunen, P Molecular and cellular biology
33
3321-9
2013
Abstract anzeigen
Small-molecule inhibition of hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) is being explored for the treatment of anemia. Previous studies have suggested that HIF-P4H-2 inhibition may also protect the heart from an ischemic insult. Hif-p4h-2(gt/gt) mice, which have 76 to 93% knockdown of Hif-p4h-2 mRNA in endothelial cells, fibroblasts, and cardiomyocytes and normoxic stabilization of Hif-α, were subjected to ligation of the left anterior descending coronary artery (LAD). Hif-p4h-2 deficiency resulted in increased survival, better-preserved left ventricle (LV) systolic function, and a smaller infarct size. Surprisingly, a significantly larger area of the LV remained perfused during LAD ligation in Hif-p4h-2(gt/gt) hearts than in wild-type hearts. However, no difference was observed in collateral vessels, while the size of capillaries, but not their number, was significantly greater in Hif-p4h-2(gt/gt) hearts than in wild-type hearts. Hif-p4h-2(gt/gt) mice showed increased cardiac expression of endothelial Hif target genes for Tie-2, apelin, APJ, and endothelial nitric oxide (NO) synthase (eNOS) and increased serum NO concentrations. Remarkably, blockage of Tie-2 signaling was sufficient to normalize cardiac apelin and APJ expression and resulted in reversal of the enlarged-capillary phenotype and ischemic cardioprotection in Hif-p4h-2(gt/gt) hearts. Activation of the hypoxia response by HIF-P4H-2 inhibition in endothelial cells appears to be a major determinant of ischemic cardioprotection and justifies the exploration of systemic small-molecule HIF-P4H-2 inhibitors for ischemic heart disease. | Western Blotting | 23775121
|
Autocrine role of angiopoietins during megakaryocytic differentiation. Saulle, E; Guerriero, R; Petronelli, A; Coppotelli, E; Gabbianelli, M; Morsilli, O; Spinello, I; Pelosi, E; Castelli, G; Testa, U; Coppola, S PloS one
7
e39796
2011
Abstract anzeigen
The tyrosine kinase Tie-2 and its ligands Angiopoietins (Angs) transduce critical signals for angiogenesis in endothelial cells. This receptor and Ang-1 are coexpressed in hematopoietic stem cells and in a subset of megakaryocytes, though a possible role of angiopoietins in megakaryocytic differentiation/proliferation remains to be demonstrated. To investigate a possible effect of Ang-1/Ang-2 on megakaryocytic proliferation/differentiation we have used both normal CD34(+) cells induced to megakaryocytic differentiation and the UT7 cells engineered to express the thrombopoietin receptor (TPOR, also known as c-mpl, UT7/mpl). Our results indicate that Ang-1/Ang-2 may have a role in megakaryopoiesis. Particularly, Ang-2 is predominantly produced and released by immature normal megakaryocytic cells and by undifferentiated UT7/mpl cells and slightly stimulated TPO-induced cell proliferation. Ang-1 production is markedly induced during megakaryocytic differentiation/maturation and potentiated TPO-driven megakaryocytic differentiation. Blocking endogenously released angiopoietins partially inhibited megakaryocytic differentiation, particularly for that concerns the process of polyploidization. According to these data it is suggested that an autocrine angiopoietin/Tie-2 loop controls megakaryocytic proliferation and differentiation. | Western Blotting | 22792187
|
Increased Expression of Angiopoietins and Tie2 in the Lungs of Chronic Asthmatic Mice. Makinde TO, Agrawal DK Am J Respir Cell Mol Biol
2009
Abstract anzeigen
Angiopoietin (Ang)1 and 2 are ligands for Tie2 tyrosine kinase receptor (Tie2). Elevated levels of both Ang1 and Ang2 in induced sputum of asthmatic patients have been reported with a positive correlation of Ang2 levels with the severity of airway occlusion. Although studies have shown Tie2-mediated regulation of non-vascular cells in some pathological conditions, current knowledge on Tie2 signaling in asthma is still limited to the vasculature. We examined the expression pattern of Ang1, Ang2, vascular endothelial growth factor (VEGF) and Tie2, and their correlation with the degree of airway remodeling in the lung of ovalbumin (OVA)-sensitized and challenged mice with airway hyperresponsiveness. Lung tissues were isolated from Balb/c mice following OVA-sensitization and challenge. Hematoxylin and eosin, Periodic acid-Schiff, and trichrome staining were used to show the lung pathology. The expression of Ang1, Ang2, VEGF and Tie2 were examined using immunofluorescence, Western blot, ELISA and real-time PCR. In the lung of normal mice, Tie2 expression was detected only in the blood vessels. However, in the lung of OVA-sensitized and challenged mice Tie2 was abundantly expressed in airway epithelial cells and a subset of macrophages, in addition to constitutive expression in pulmonary vessels. Increase in Tie2 expression correlated with the severity of airway remodeling. Macrophages and airway epithelial cells express Ang2 and VEGF only in allergic model. Ang1 was constitutively expressed, with a decrease in mRNA level in allergic model. In conclusion, increased expression of Tie2 and Ang2 in allergic airway epithelium and alveolar macrophage correlate with the severity of airway remodeling. | | 20463289
|
Angiopoietin-1/Tie-2 activation contributes to vascular survival and tumor growth during VEGF blockade. Huang, J; Bae, JO; Tsai, JP; Kadenhe-Chiweshe, A; Papa, J; Lee, A; Zeng, S; Kornfeld, ZN; Ullner, P; Zaghloul, N; Ioffe, E; Nandor, S; Burova, E; Holash, J; Thurston, G; Rudge, J; Yancopoulos, GD; Yamashiro, DJ; Kandel, JJ International journal of oncology
34
79-87
2009
Abstract anzeigen
Approval of the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab by the FDA in 2004 reflected the success of this vascular targeting strategy in extending survival in patients with advanced cancers. However, consistent with previous reports that experimental tumors can grow or recur during VEGF blockade, it has become clear that many patients treated with VEGF inhibitors will ultimately develop progressive disease. Previous studies have shown that disruption of VEGF signaling in tumors induces remodeling in surviving vessels, and link increased expression of angiopoietin-1 (Ang-1) with this process. However, overexpression of Ang-1 in different tumors has yielded divergent results, restricting angiogenesis in some systems while promoting it in others. These data raise the possibility that effects of Ang-1/Tie-2 may be context-dependent. Expression of an Ang-1 construct (Ang1*) did not significantly change tumor growth in our model prior to treatment, although vessels exhibited changes consistent with increased Tie-2 signaling. During inhibition of VEGF, however, both overexpression of Ang1* and administration of an engineered Ang-1 agonist (Bow-Ang1) strikingly protected tumors and vasculature from regression. In this context, Ang-1/Tie-2 activation limited tumor hypoxia, increased vessel caliber, and promoted recruitment of mural cells. Thus, these studies support a model in which activation of Tie-2 is important for tumor and vessel survival when VEGF-dependent vasculature is stressed. Understanding such mechanisms of adaptation to this validated form of therapy may be important in designing regimens that make the best use of this approach. Volltextartikel | | 19082480
|
Expression of Tie2/Tek in breast tumour vasculature provides a new marker for evaluation of tumour angiogenesis. Peters, K G, et al. Br. J. Cancer, 77: 51-6 (1998)
1998
Abstract anzeigen
Endothelial receptor tyrosine kinases may play important roles in pathological vascular growth, particularly in tumours. In this study, immunohistochemistry was used to evaluate the expression of a novel endothelial receptor tyrosine kinase, Tie2/Tek, in the endothelium of vascular 'hotspots' in normal breast tissue (n = 10), benign breast lesions (n = 10) and in breast tumours (n = 123). Tie2 expression was detected in the endothelium of all breast tissues examined. However, the strongest expression of Tie-2 was seen in vascular 'hot spots' within the inflammatory infiltrate at the periphery of invasive tumours. Moreover, the proportion of Tie2-positive vessels (Tie2 counts/CD31 counts) was significantly higher in breast tumours than the proportion of Tie2-positive vessels in either normal breast tissue or benign breast lesions (P = 0.004 and 0.0001 respectively). These data are consistent with a role for Tie2 in tumour angiogenesis and demonstrate the potential use of Tie2 expression as a novel marker of the tumour vasculature. | | 9459145
|
Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Lin, P, et al. Proc. Natl. Acad. Sci. U.S.A., 95: 8829-34 (1998)
1998
Abstract anzeigen
Angiogenesis is required for tumor growth and metastasis, and inhibition of angiogenesis is a promising approach for anticancer therapy. Tie2 (a.k.a Tek) is an endothelium-specific receptor tyrosine kinase known to play a role in tumor angiogenesis. To explore the therapeutic potential of blocking the Tie2 pathway, an adenoviral vector was constructed to deliver a recombinant, soluble Tie2 receptor (AdExTek) capable of blocking Tie2 activation. Two days after i.v. injection of AdExTek, the plasma concentration of ExTek exceeded 1 mg/ml and was maintained for about 8 days. Administration of AdExTek to mice with two different well established primary tumors, a murine mammary carcinoma (4T1) or a murine melanoma (B16F10.9), significantly inhibited the growth rate of both tumors (64% and 47%, respectively). To study the effect of ExTek on tumor metastasis, both tumor cell lines were coinjected i.v. with either AdExTek or a control virus. Mice coinjected with control virus developed numerous large, well vascularized lung metastases. In contrast, mice coinjected with AdExTek virus developed few, if any, grossly apparent metastases, and histologic examination revealed only small avascular clusters of tumor cells. Administration of AdExTek also inhibited tumor metastasis when delivered at the time of surgical excision of primary tumors in a clinically relevant model of tumor metastasis. This study demonstrates the potential utility of gene therapy for systemic delivery of an antiangiogenic agent targeting an endothelium-specific receptor, Tie2. | | 9671764
|
Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Wong, A L, et al. Circ. Res., 81: 567-74 (1997)
1997
Abstract anzeigen
Angiogenesis, the process of new vessels sprouting from the existing vasculature, is a critical process during early development. However, angiogenesis rarely occurs in the adult, except in response to cyclic hormonal stimulation in the ovary and uterus, in response to injury, and in response to pathological conditions such as tumorigenesis and diabetes mellitus. Tie2 (also known as Tek) is a novel endothelium-specific receptor tyrosine kinase, which has been demonstrated to be essential for the development of the embryonic vasculature; Tie2 knockout mice die by embryonic day 10.5 with specific defects in the formation of microvessels. Tie2 is downregulated later in embryogenesis, and its function in the adult has been relatively unexplored. To gain insight into the potential functions of Tie2 in the adult vasculature, Tie2 expression was examined in adult tissues undergoing angiogenesis and in quiescent tissues. Tie2 expression was localized by immunohistochemistry to the endothelium of neovessels in rat tissues undergoing angiogenesis during hormonally stimulated follicular maturation and uterine development and in healing skin wounds. Immunoprecipitation and RNase protection assay demonstrated upregulation of Tie2 protein and mRNA in rat and mouse skin wounds, respectively. Moreover, Tie2 immunoprecipitated from skin wounds was tyrosine-phosphorylated, indicating active downstream signaling. Surprisingly, Tie2 was also expressed in the entire spectrum of the quiescent vasculature (arteries, veins, and capillaries) in a wide range of adult tissues, and Tie2 immunoprecipitated from quiescent adult tissues was also tyrosine-phosphorylated. Together, these results suggest a dual function for Tie2 in adult tissues involving both angiogenesis and vascular maintenance. | Immunohistochemistry (Tissue) | 9314838
|