Wenn Sie das Fenster schließen, wird Ihre Konfiguration nicht gespeichert, es sei denn, Sie haben Ihren Artikel in die Bestellung aufgenommen oder zu Ihren Favoriten hinzugefügt.
Klicken Sie auf OK, um das MILLIPLEX® MAP-Tool zu schließen oder auf Abbrechen, um zu Ihrer Auswahl zurückzukehren.
Wählen Sie konfigurierbare Panels & Premixed-Kits - ODER - Kits für die zelluläre Signaltransduktion & MAPmates™
Konfigurieren Sie Ihre MILLIPLEX® MAP-Kits und lassen sich den Preis anzeigen.
Konfigurierbare Panels & Premixed-Kits
Unser breites Angebot enthält Multiplex-Panels, für die Sie die Analyten auswählen können, die am besten für Ihre Anwendung geeignet sind. Unter einem separaten Register können Sie das Premixed-Cytokin-Format oder ein Singleplex-Kit wählen.
Kits für die zelluläre Signaltransduktion & MAPmates™
Wählen Sie gebrauchsfertige Kits zur Erforschung gesamter Signalwege oder Prozesse. Oder konfigurieren Sie Ihre eigenen Kits mit Singleplex MAPmates™.
Die folgenden MAPmates™ sollten nicht zusammen analysiert werden: -MAPmates™, die einen unterschiedlichen Assaypuffer erfordern. -Phosphospezifische und MAPmate™ Gesamtkombinationen wie Gesamt-GSK3β und Gesamt-GSK3β (Ser 9). -PanTyr und locusspezifische MAPmates™, z.B. Phospho-EGF-Rezeptor und Phospho-STAT1 (Tyr701). -Mehr als 1 Phospho-MAPmate™ für ein einziges Target (Akt, STAT3). -GAPDH und β-Tubulin können nicht mit Kits oder MAPmates™, die panTyr enthalten, analysiert werden.
.
Bestellnummer
Bestellinformationen
St./Pkg.
Liste
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Wählen Sie bitte Spezies, Panelart, Kit oder Probenart
Um Ihr MILLIPLEX® MAP-Kit zu konfigurieren, wählen Sie zunächst eine Spezies, eine Panelart und/oder ein Kit.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Spezies
Panelart
Gewähltes Kit
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
96-Well Plate
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
Weitere Reagenzien hinzufügen (MAPmates erfordern die Verwendung eines Puffer- und Detektionskits)
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Platzsparende Option Kunden, die mehrere Kits kaufen, können ihre Multiplex-Assaykomponenten in Kunststoffbeuteln anstelle von Packungen erhalten, um eine kompaktere Lagerung zu ermöglichen.
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Das Produkt wurde in Ihre Bestellung aufgenommen
Sie können nun ein weiteres Kit konfigurieren, ein Premixed-Kit wählen, zur Kasse gehen oder das Bestell-Tool schließen.
Anti-GAPDH (P. falciparum), clone 1.4, Cat. No. MABS1946, is a mouse monoclonal antibody that detects Glyceraldehyde-3-phosphate dehydrogenase in Plasmodium falciparum and has been tested for use in Immunofluorescence and Western Blotting.
More>>Anti-GAPDH (P. falciparum), clone 1.4, Cat. No. MABS1946, is a mouse monoclonal antibody that detects Glyceraldehyde-3-phosphate dehydrogenase in Plasmodium falciparum and has been tested for use in Immunofluorescence and Western Blotting. Less<<
Empfohlene Produkte
Übersicht
Replacement Information
Description
Catalogue Number
MABS1946-100UG
Description
Anti-GAPDH (P. falciparum) Antibody, clone 1.4
Alternate Names
Glyceraldehyde-3-phosphate dehydrogenase
EC 1.2.1.12
Background Information
Glyceraldehyde-3-phosphate dehydrogenase (UniProt: Q8IKK7; also known as EC:1.2.1.12, GAPDH) is encoded by the PF3D7_1462800 gene (Gene ID: 812180) in Plasmodium falciparum. GAPDH is a ubiquitous glycolytic house-keeping enzyme that catalyzes the synthesis of 1,3-biphosphoglycerate. In mammalian cells, besides its cytoplasmic action in metabolism it is also involved in the initial stages of apoptosis or oxidative stress response where GAPDH is translocated to the nucleus. GADPH from Plasmodium falciparum (pfGAPDH) is reported to participate in functions other than glycolysis. Here GAPDH exerts non-glycolytic function(s), including a role in vesicular transport and biogenesis of apical organelles. In Plasmodium falciparum it is partially segregated in the late stages of parasite development from the cytosol that suggests additional non-glycolytic function(s) of this enzyme. It is shown to be recruited to HeLa cell microsomal membranes in response to mammalian GTPase Rab2. The N -Terminal fragment of pfGAPDH is shown to bind to microsomal membranes in response to Rab2 and competitively inhibit Rab-2 stimulated pfGAPDH recruitment. Clone 1.4 specifically recognizes the recombinant pfGAPDH, but does not react with pfAldolase. (Ref.: Daubenberger, CA., et al. (2003). Biol. Chem. 384 (8); 1227-1237.
References
Product Information
Format
Purified
Presentation
Purified mouse monoclonal antibody IgG1 in buffer containing 0.1 M Tris-Glycine (pH 7.4), 150 mM NaCl with 0.05% sodium azide.
Applications
Application
Anti-GAPDH (P. falciparum), clone 1.4, Cat. No. MABS1946, is a mouse monoclonal antibody that detects Glyceraldehyde-3-phosphate dehydrogenase in Plasmodium falciparum and has been tested for use in Immunofluorescence and Western Blotting.
Key Applications
Immunofluorescence
Western Blotting
Application Notes
Immunofluorescence Analysis: A representative lot detected GAPDH (P. falciparum) in Immunofluorescence applications (Dreyer, A.M., et. al. (2012). J Immunol. 188(12):6225-37; Daubenberger, C.A., et. al. (2003). Biol Chem. 384(8):1227-37; Favuzza, P., et. al. (2016). Malar J. 15:161).
Western Blotting Analysis: A representative lot detected GAPDH (P. falciparum) in Western Blotting applications (Daubenberger, C.A., et. al. (2003). Biol Chem. 384(8):1227-37; Favuzza, P., et. al. (2016). Malar J. 15:161).
Biological Information
Immunogen
His-tagged full length recombinant Glyceraldehyde-3-phosphate dehydrogenase from Plasmodium falciparum.
Clone
1.4
Concentration
Please refer to lot specific datasheet.
Host
Mouse
Specificity
Clone 1.4 is a mouse monoclonal antibody that specifically detects Glyceraldehyde-3-phosphate dehydrogenase in Plasmodium falciparum. It targets an epitope within the N-terminal half.
~37 kDa observed; 36.63 kDa calculated. Uncharacterized bands may be observed in some lysate(s).
Physicochemical Information
Dimensions
Materials Information
Toxicological Information
Safety Information according to GHS
Safety Information
Product Usage Statements
Quality Assurance
Evaluated by Western Blotting in Plasmodium falciparum infected human erythrocytes.
Western Blotting Analysis: 0.5 µg/mL of this antibody detected GAPDH in Plasmodium falciparum infected human erythrocytes.
Usage Statement
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
The pathogenesis of malaria is primarily associated with blood-stage infection and there is strong evidence that antibodies specific for parasite blood-stage antigens can control parasitaemia. This provides a strong rationale for incorporation of asexual blood-stage antigen components into an effective multivalent malaria subunit vaccine. On the basis of available genome-wide transcriptomic and proteomic data, previously uncharacterized Plasmodium falciparum open reading frames were screened for new blood stage vaccine candidates. This has led to the identification of the cysteine-rich protective antigen (PfCyRPA), which forms together with PfRH5 and PfRipr a multiprotein complex that is crucial for erythrocyte invasion.Glycosylated and non-glycosylated variants of recombinant PfCyRPA were expressed and produced as secreted protein in mammalian cells. Adjuvanted formulations of purified PfCyRPA were tested to assess whether they can effectively elicit parasite inhibitory antibodies, and to investigate whether or not the glycosylation status affects antibody binding. For this purpose, two sets of PfCyRPA-specific mouse monoclonal antibodies (mAbs) have been raised and evaluated for functional activity.Generated PfCyRPA-specific mAbs, irrespective of the immunogen's glycosylation status, showed substantial parasite in vitro growth-inhibitory activity due to inhibition of erythrocyte invasion by merozoites. Furthermore, passive immunization experiments in P. falciparum infected NOD-scid IL2Rγ (null) mice engrafted with human erythrocytes demonstrated potent in vivo growth-inhibitory activity of generated mAbs.Recombinantly expressed PfCyRPA tested as adjuvanted vaccine formulations in mice elicited antibodies that significantly inhibit P. falciparum asexual blood stage parasite growth both in vitro and in vivo. These findings render PfCyRPA a promising blood-stage candidate antigen for inclusion into a multicomponent malaria subunit vaccine.
An effective malaria vaccine could prove to be the most cost-effective and efficacious means of preventing severe disease and death from malaria. In an endeavor to identify novel vaccine targets, we tested predicted Plasmodium falciparum open reading frames for proteins that elicit parasite-inhibitory Abs. This has led to the identification of the cysteine-rich protective Ag (CyRPA). CyRPA is a cysteine-rich protein harboring a predicted signal sequence. The stage-specific expression of CyRPA in late schizonts resembles that of proteins known to be involved in merozoite invasion. Immunofluorescence staining localized CyRPA at the apex of merozoites. The entire protein is conserved as shown by sequencing of the CyRPA encoding gene from a diverse range of P. falciparum isolates. CyRPA-specific mAbs substantially inhibited parasite growth in vitro as well as in a P. falciparum animal model based on NOD-scid IL2Rγ(null) mice engrafted with human erythrocytes. In contrast to other P. falciparum mouse models, this system generated very consistent results and evinced a dose-response relationship and therefore represents an unprecedented in vivo model for quantitative comparison of the functional potencies of malaria-specific Abs. Our data suggest a role for CyRPA in erythrocyte invasion by the merozoite. Inhibition of merozoite invasion by CyRPA-specific mAbs in vitro and in vivo renders this protein a promising malaria asexual blood-stage vaccine candidate Ag.
Spatial and temporal distribution of the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (pfGAPDH) and aldolase (pfAldolase) of Plasmodium falciparum were investigated using specific mAbs and indirect immunofluorescence analysis (IFA). Both glycolytic enzymes were co-localized during ring and trophozoite stages of both liver and asexual blood stage parasites. During schizogony, pfGAPDH became associated with the periphery of the parasites and eventually accumulated in the apical region of merozoites, while pfAldolase showed no segregation. Subcellular fractionation experiments demonstrated that pfGAPDH was found in both the membrane-containing pellet and the supernatant fraction of parasite lysates. In contrast, pfAldolase was only found in the supernatant fraction. A quantitative binding assay showed that pfGAPDH could be recruited to HeLa cell microsomal membranes in response to mammalian GTPase Rab2, indicating that Rab2-dependent recruitment of cytosolic components to membranes is conserved in evolution. Two overlapping fragments of pfGAPDH (residues 1-192 and 133-337) were evaluated in the microsomal binding assay. We found that the N'-terminal fragment competitively inhibited Rab2-stimulated pfGAPDH recruitment. Thus, the domain mediating the evolutionarily conserved Rab2-dependent membrane recruitment is located in the N'-terminus of GAPDH. Together, these results suggest that pfGAPDH exerts non-glycolytic function(s) in P. falciparum, possibly including a role in vesicular transport and biogenesis of apical organelles.