Bcl-xL controls a switch between cell death modes during mitotic arrest. Bah, N; Maillet, L; Ryan, J; Dubreil, S; Gautier, F; Letai, A; Juin, P; Barillé-Nion, S Cell death & disease
5
e1291
2014
Abstract anzeigen
Antimitotic agents such as microtubule inhibitors (paclitaxel) are widely used in cancer therapy while new agents blocking mitosis onset are currently in development. All these agents impose a prolonged mitotic arrest in cancer cells that relies on sustained activation of the spindle assembly checkpoint and may lead to subsequent cell death by incompletely understood molecular events. We have investigated the role played by anti-apoptotic Bcl-2 family members in the fate of mitotically arrested mammary tumor cells treated with paclitaxel, or depleted in Cdc20, the activator of the anaphase promoting complex. Under these conditions, a weak and delayed mitotic cell death occurs that is caspase- and Bax/Bak-independent. Moreover, BH3 profiling assays indicate that viable cells during mitotic arrest are primed to die by apoptosis and that Bcl-xL is required to maintain mitochondrial integrity. Consistently, Bcl-xL depletion, or treatment with its inhibitor ABT-737 (but not with the specific Bcl-2 inhibitor ABT-199), during mitotic arrest converts cell response to antimitotics to efficient caspase and Bax-dependent apoptosis. Apoptotic priming under conditions of mitotic arrest relies, at least in part, on the phosphorylation on serine 62 of Bcl-xL, which modulates its interaction with Bax and its sensitivity to ABT-737. The phospho-mimetic S62D-Bcl-xL mutant is indeed less efficient than the corresponding phospho-deficient S62A-Bcl-xL mutant in sequestrating Bax and in protecting cancer cells from mitotic cell death or yeast cells from Bax-induced growth inhibition. Our results provide a rationale for combining Bcl-xL targeting to antimitotic agents to improve clinical efficacy of antimitotic strategy in cancer therapy. | Western Blotting | 24922075
 |
Enhanced chemosensitivity of drug-resistant osteosarcoma cells by lentivirus-mediated Bcl-2 silencing. Yao Zhao,Chun-lin Zhang,Bing-fang Zeng,Xiao-san Wu,Tian-tian Gao,Yoshino Oda Biochemical and biophysical research communications
390
2009
Abstract anzeigen
The Bcl-2 gene is frequently overexpressed in malignancy and is responsible for the resistance induced by chemotherapeutic drugs. The aim of this study was to investigate whether the inhibition of Bcl-2 by lentivirus-mediated RNA interference would enhance doxorubicin cytotoxicity in the drug-resistant human osteosarcoma MG63 cells. Downregulation of Bcl-2 was confirmed by quantitative reverse transcription PCR and Western blotting. Moreover, the ratio of Bcl-2/Bax decreased due to the downregulation of Bcl-2 expression and the upregulation of Bax expression. Decreased cyclin D1 expression was also detected. Flow cytometry and MTT assays revealed that Bcl-2 knock-down increased cellular apoptosis and the MG63 cells became sensitive to doxorubicin. However, no detectable alterations in MDR1 or Bcl-xl expression were observed. Therefore, lentivirus-mediated Bcl-2 knock-down may sensitize these human osteosarcoma cells to doxorubicin and provide a potential therapeutic strategy for osteosarcoma. | | 19818735
 |
Ochratoxin A induces apoptosis in human lymphocytes through down regulation of Bcl-xL. Assaf, Hind, et al. Toxicol. Sci., 79: 335-44 (2004)
2004
Abstract anzeigen
Ochratoxin A (OTA) is a widespread mycotoxin contaminating feed and food. Besides its potent nephrotoxicity, OTA also affects the immune system. We demonstrate here a role for Bcl-x(L) in OTA-induced apoptosis in human lymphocytes. In particular, human peripheral blood lymphocytes and the human lymphoid T cell line, Kit 225 cells, underwent apoptosis in a time- and dose-dependent manner. This apoptosis was inhibited by z-VAD.fmk, suggesting that caspases were responsible for the induction of apoptosis. Moreover, OTA triggered mitochondrial transmembrane potential (Deltachim) loss and caspase-9 and caspase-3 activation. Interestingly, Bcl-x(L) protein expression was decreased by OTA treatment, whereas Bcl-2 protein level was not affected. Down-regulation of bcl-x(L) mRNA was not observed in cells treated with OTA. Overexpression of Bcl-x(L) in Kit 225 cells protected them against mitochondrial perturbation and retarded the appearance of apoptotic cells. Taken together, our data indicate that mitochondria are a central component in OTA-induced apoptosis and that the loss of Bcl-x(L) may participate in OTA-induced cell death. | | 15056805
 |