Wenn Sie das Fenster schließen, wird Ihre Konfiguration nicht gespeichert, es sei denn, Sie haben Ihren Artikel in die Bestellung aufgenommen oder zu Ihren Favoriten hinzugefügt.
Klicken Sie auf OK, um das MILLIPLEX® MAP-Tool zu schließen oder auf Abbrechen, um zu Ihrer Auswahl zurückzukehren.
Wählen Sie konfigurierbare Panels & Premixed-Kits - ODER - Kits für die zelluläre Signaltransduktion & MAPmates™
Konfigurieren Sie Ihre MILLIPLEX® MAP-Kits und lassen sich den Preis anzeigen.
Konfigurierbare Panels & Premixed-Kits
Unser breites Angebot enthält Multiplex-Panels, für die Sie die Analyten auswählen können, die am besten für Ihre Anwendung geeignet sind. Unter einem separaten Register können Sie das Premixed-Cytokin-Format oder ein Singleplex-Kit wählen.
Kits für die zelluläre Signaltransduktion & MAPmates™
Wählen Sie gebrauchsfertige Kits zur Erforschung gesamter Signalwege oder Prozesse. Oder konfigurieren Sie Ihre eigenen Kits mit Singleplex MAPmates™.
Die folgenden MAPmates™ sollten nicht zusammen analysiert werden: -MAPmates™, die einen unterschiedlichen Assaypuffer erfordern. -Phosphospezifische und MAPmate™ Gesamtkombinationen wie Gesamt-GSK3β und Gesamt-GSK3β (Ser 9). -PanTyr und locusspezifische MAPmates™, z.B. Phospho-EGF-Rezeptor und Phospho-STAT1 (Tyr701). -Mehr als 1 Phospho-MAPmate™ für ein einziges Target (Akt, STAT3). -GAPDH und β-Tubulin können nicht mit Kits oder MAPmates™, die panTyr enthalten, analysiert werden.
.
Bestellnummer
Bestellinformationen
St./Pkg.
Liste
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Wählen Sie bitte Spezies, Panelart, Kit oder Probenart
Um Ihr MILLIPLEX® MAP-Kit zu konfigurieren, wählen Sie zunächst eine Spezies, eine Panelart und/oder ein Kit.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Spezies
Panelart
Gewähltes Kit
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
96-Well Plate
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
Weitere Reagenzien hinzufügen (MAPmates erfordern die Verwendung eines Puffer- und Detektionskits)
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Platzsparende Option Kunden, die mehrere Kits kaufen, können ihre Multiplex-Assaykomponenten in Kunststoffbeuteln anstelle von Packungen erhalten, um eine kompaktere Lagerung zu ermöglichen.
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Das Produkt wurde in Ihre Bestellung aufgenommen
Sie können nun ein weiteres Kit konfigurieren, ein Premixed-Kit wählen, zur Kasse gehen oder das Bestell-Tool schließen.
Detect Angiotensin Converting Enzyme using this Anti-Angiotensin Converting Enzyme Antibody, clone 3G8 validated for use in ELISA, IP, IC, IH.
More>>Detect Angiotensin Converting Enzyme using this Anti-Angiotensin Converting Enzyme Antibody, clone 3G8 validated for use in ELISA, IP, IC, IH. Less<<
SDB (Sicherheitsdatenblätter), Analysenzertifikate und Qualitätszertifikate, Dossiers, Broschüren und andere verfügbare Dokumente.
Detect Angiotensin Converting Enzyme using this Anti-Angiotensin Converting Enzyme Antibody, clone 3G8 validated for use in ELISA, IP, IC, IH.
Key Applications
ELISA
Immunoprecipitation
Immunocytochemistry
Immunohistochemistry
Applications Not Recommended
Immunohistochemistry (Paraffin)
Application Notes
Immunohistochemistry (Danilov et al., 1987; Falkenhahn et al., 1995; Morrell et al., 1995) : 1:200 on fresh frozen or 4% paraformaldehyde fixed tissues. Does not work on paraffin embedded tissue.
Immunocytochemistry: 1:100. Reacts with endothelial cells, macrophages (activated) and THP1 cells (monocyte line).
Immunoprecipitation: 1:1,000
ELISA : 1:1,000
Structure-function of ACE (Danilov et al., 1994)
Optimal working dilutions must be determined by the end user.
Biological Information
Immunogen
Angiotensin-converting enzyme from human lung
Clone
3G8
Concentration
Please refer to the Certificate of Analysis for the lot-specific concentration.
This gene encodes an enzyme involved in catalyzing the conversion of angiotensin I into a physiologically active peptide angiotensin II. Angiotensin II is a potent vasopressor and aldosterone-stimulating peptide that controls blood pressure and fluid-electrolyte balance. This enzyme plays a key role in the renin-angiotensin system. Many studies have associated the presence or absence of a 287 bp Alu repeat element in this gene with the levels of circulating enzyme or cardiovascular pathophysiologies. Two most abundant alternatively spliced variants of this gene encode two isozymes - the somatic form and the testicular form that are equally active. Multiple additional alternatively spliced variants have been identified but their full length nature has not been determined.
Gene Symbol
ACE
DCP
ACE1
carboxycathepsin
ACE-T
MGC26566
DCP1
CD143
EC 3.4.15.1
EC 3.2.1.- [Contains: Angiotensin-converting enzyme, testis- specific isoform, soluble form].
FUNCTION: SwissProt: P22966 # Converts angiotensin I to angiotensin II by release of the terminal His-Leu, this results in an increase of the vasoconstrictor activity of angiotensin. Also able to inactivate bradykinin, a potent vasodilator. Has also a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety.| P12821 # Converts angiotensin I to angiotensin II by release of the terminal His-Leu, this results in an increase of the vasoconstrictor activity of angiotensin. Also able to inactivate bradykinin, a potent vasodilator. COFACTOR: Binds 1 zinc ion per subunit. & Binds 2 chloride ions per subunit. SIZE: 732 amino acids; 83330 Da SUBCELLULAR LOCATION: Angiotensin-converting enzyme, testis- specific isoform, soluble form: Secreted. & Cell membrane; Single-pass type I membrane protein. TISSUE SPECIFICITY: Spermatocytes, adult testis. DOMAIN: SwissProt: P22966 PTM: Phosphorylated by CK2 on Ser-725; which allows membrane retention (By similarity). DISEASE: SwissProt: P12821 # Genetic variations in ACE may be a cause of susceptibility to ischemic stroke [MIM:601367]; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors. & Defects in ACE are a cause of renal tubular dysgenesis (RTD) [MIM:267430]. RTD is an autosomal recessive severe disorder of renal tubular development characterized by persistent fetal anuria and perinatal death, probably due to pulmonary hypoplasia from early-onset oligohydramnios (the Potter phenotype). & Genetic variations in ACE can influence susceptibility to diabetic nephropathy [MIM:603933]. Diabetic nephropathy is a kidney disease and resultant kidney function impairment due to the long standing effects of diabetes on the microvasculature (glomerulus) of the kidney. Features include increased urine protein and declining kidney function. SIMILARITY: SwissProt: P22966 ## Belongs to the peptidase M2 family.| P12821 ## Belongs to the peptidase M2 family. MISCELLANEOUS: The glycosidase activity probably uses different active site residues than the metalloprotease activity. & Inhibitors of ACE are commonly used to treat hypertension and cardiac dysfunction.
Physicochemical Information
Dimensions
Materials Information
Toxicological Information
Safety Information according to GHS
Safety Information
Product Usage Statements
Usage Statement
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
Storage and Shipping Information
Storage Conditions
Maintain at -20°C in undiluted aliquots for up to 6 months. Avoid repeated freeze/thaw cycles.
Packaging Information
Material Size
100 µg
Transport Information
Supplemental Information
Specifications
Global Trade Item Number
Bestellnummer
GTIN
MAB4055
04053252667237
Documentation
Literatur
Übersicht
Pub Med ID
Cellular distribution of angiotensin-converting enzyme after myocardial infarction. Falkenhahn, M, et al. Hypertension, 25: 219-26 (1995)
1994
We studied the cellular distribution of angiotensin-converting enzyme (ACE) in the heart related to the cell types involved in left ventricular repair and remodeling before and after myocardial infarction by immunohistochemical techniques using monoclonal and polyclonal antibodies. In noninfarcted myocardium of both human and rat, ACE expression was confined to endothelial cells and subendocardial cell layers of the aortic valve. ACE was prominent in endothelia of small arteries and arterioles, whereas only half the coronary capillaries were immunoreactive and venous vessels were almost completely devoid of the enzyme. In a rat model of myocardial infarction, ACE distribution was determined 1, 3, and 7 days and 2, 3, and 6 weeks after coronary occlusion. Three and 7 days after infarction, endothelial cells of sprouting capillaries and macrophages in the marginal zone of necrosis revealed ACE expression. In both human and rat with the onset of fibrosis, intense staining of the enzyme was found in the marginal zone of the repair tissue. In situ hybridization for collagen type I in the rat revealed that zones with high collagen content had almost no ACE immunoreactivity. Vascular smooth muscle cells and cardiomyocytes revealed no ACE expression throughout the study. We conclude that endothelial cells are the principal source for the expression of ACE after myocardial infarction. The observed induction of ACE with the onset of fibrosis suggests a role of this enzyme that is related to tissue repair and remodeling.
Angiotensin converting enzyme expression is increased in small pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. Morrell, N W, et al. J. Clin. Invest., 96: 1823-33 (1995)
1994
Previous studies suggest that while lung angiotensin converting enzyme (ACE) activity is reduced during chronic hypoxia, inhibitors of ACE attenuate hypoxic pulmonary hypertension. In an attempt to explain this paradox we investigated the possibility that whole lung ACE activity may not reflect local pulmonary vascular ACE expression. The experimental approach combined in vivo hemodynamic studies in control and chronically hypoxic rats, measurement of whole lung ACE activity, and evaluation of local pulmonary vascular ACE expression by in situ hybridization and immunohistochemistry. Total lung ACE activity was reduced to 50% of control activity by 5 d of hypoxia and remained low for the duration of the study. Immunohistochemistry showed a marked reduction of ACE staining in alveolar capillary endothelium. However, an increase in ACE staining was observed in the walls of small newly muscularized pulmonary arteries at the level of alveolar ducts and walls. In situ hybridization studies showed increased signal for ACE mRNA in the same vessels. Inhibition of ACE by captopril during chronic hypoxia attenuated pulmonary hypertension and markedly reduced distal muscularization of small pulmonary arteries. In addition, we demonstrated marked longitudinal variation in ACE expression along the normal pulmonary vasculature with the highest levels found in small muscular arteries associated with terminal and respiratory bronchioles. We conclude that local ACE expression is increased in the walls of small pulmonary arteries during the development of hypoxic pulmonary hypertension, despite a generalized reduction in alveolar capillary ACE expression, and we speculate that local arteriolar ACE may play a role in the vascular remodeling associated with pulmonary hypertension.
Structure-function analysis of angiotensin I-converting enzyme using monoclonal antibodies. Selective inhibition of the amino-terminal active site. Danilov, S, et al. J. Biol. Chem., 269: 26806-14 (1994)
1993
Angiotensin I-converting enzyme (ACE; kininase II) contains two very similar domains (the NH2- and COOH-terminal domains (N and C domains, respectively)), each bearing an active site. These active sites hydrolyze the same peptides, but do not have the same catalytic properties and substrate specificities. In an attempt to develop domain-specific immunological probes, two series of monoclonal antibodies (mAbs), 19 clones in all, were produced and tested against human ACE. These mAbs recognized at least nine different epitopes within three antigenic regions of the ACE molecule. Testing on wild-type recombinant ACE and several mutants with only one intact domain showed that these epitopes were all located in the N domain. None of the mAbs recognized the C domain. This particular specificity and analysis of results obtained with several polyclonal antibodies to human ACE suggest that ACE immunogenicity is determined mainly by the N domain. Two mAbs (3A5 and i2H5) recognizing epitopes from different antigenic regions of ACE inhibited the enzymatic activity of the N (but not of the C) domain. mAb 3A5 had the same inhibitory potency toward hippuryl-His-Leu, benzyloxycarbonyl-Phe-His-Leu, and angiotensin I hydrolysis, with 50% inhibition achieved at a mAb/ACE molar ratio of 6. mAb i2H5 was roughly three times more effective than mAb 3A5 inhibiting the hydrolysis of benzyloxycarbonyl-Phe-His-Leu and the natural substrates angiotensin I and bradykinin (50% inhibition at a molar ratio of 1-2), but was less effective in inhibiting hippuryl-His-Leu cleavage (50% inhibition at a molar ratio of 22-25), indicating that this substrate interacts with a specific subsite. mAb i2H5 almost completely inhibited the hydrolysis of the luteinizing hormone-releasing hormone by the isolated N domain. Both the primary carboxyl- and amino-terminal cleavages of this peptide were suppressed. This antibody suppressed the primary amino-terminal cleavage of the luteinizing hormone-releasing hormone by wild-type ACE by > 90%, indicating that this particular ACE function is mediated mainly by the N domain active site. These data provide evidence for structural differences between the two homologous domains of ACE despite their high degree of sequence homology and show that monoclonal antibodies are able to distinguish between the two active sites in ACE.
Immunohistochemical study of angiotensin-converting enzyme in human tissues using monoclonal antibodies. Danilov, S M, et al. Histochemistry, 87: 487-90 (1987)
1987
The localization of angiotensin-converting enzyme (ACE) in human tissues has been studied by the PAP-method with the use of monoclonal antibody 9 B9 against human lung ACE. The enzyme was detected on the surface of endothelial cells in lung, myocardium, liver, intestine and testis as well as in the epithelial cells of the kidney proximal tubules and intestine. The monoclonal antibody 9 B9 did not react with ACE in the epithelial cells of the testis seminiferous tubules. These data suggest that the antibody 9 B9 recognizes epitope which is shared by the ACE molecule of endothelial cells and renal and intestinal epithelial cells but is not present in testicular ACE, or is not accessible there to the antibody.