Thy1.2 YFP-16 transgenic mouse labels a subset of large-diameter sensory neurons that lack TRPV1 expression. Taylor-Clark, TE; Wu, KY; Thompson, JA; Yang, K; Bahia, PK; Ajmo, JM PloS one
10
e0119538
2015
Mostrar Resumo
The Thy1.2 YFP-16 mouse expresses yellow fluorescent protein (YFP) in specific subsets of peripheral and central neurons. The original characterization of this model suggested that YFP was expressed in all sensory neurons, and this model has been subsequently used to study sensory nerve structure and function. Here, we have characterized the expression of YFP in the sensory ganglia (DRG, trigeminal and vagal) of the Thy1.2 YFP-16 mouse, using biochemical, functional and anatomical analyses. Despite previous reports, we found that YFP was only expressed in approximately half of DRG and trigeminal neurons and less than 10% of vagal neurons. YFP-expression was only found in medium and large-diameter neurons that expressed neurofilament but not TRPV1. YFP-expressing neurons failed to respond to selective agonists for TRPV1, P2X(2/3 and TRPM8 channels in Ca2+ imaging assays. Confocal analysis of glabrous skin, hairy skin of the back and ear and skeletal muscle indicated that YFP was expressed in some peripheral terminals with structures consistent with their presumed non-nociceptive nature. In summary, the Thy1.2 YFP-16 mouse expresses robust YFP expression in only a subset of sensory neurons. But this mouse model is not suitable for the study of nociceptive nerves or the function of such nerves in pain and neuropathies. | Immunohistochemistry | | 25746468
|
Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Poitelon, Y; Bogni, S; Matafora, V; Della-Flora Nunes, G; Hurley, E; Ghidinelli, M; Katzenellenbogen, BS; Taveggia, C; Silvestri, N; Bachi, A; Sannino, A; Wrabetz, L; Feltri, ML Nature communications
6
8303
2015
Mostrar Resumo
Cell-cell interactions promote juxtacrine signals in specific subcellular domains, which are difficult to capture in the complexity of the nervous system. For example, contact between axons and Schwann cells triggers signals required for radial sorting and myelination. Failure in this interaction causes dysmyelination and axonal degeneration. Despite its importance, few molecules at the axo-glial surface are known. To identify novel molecules in axo-glial interactions, we modified the 'pseudopodia' sub-fractionation system and isolated the projections that glia extend when they receive juxtacrine signals from axons. By proteomics we identified the signalling networks present at the glial-leading edge, and novel proteins, including members of the Prohibitin family. Glial-specific deletion of Prohibitin-2 in mice impairs axo-glial interactions and myelination. We thus validate a novel method to model morphogenesis and juxtacrine signalling, provide insights into the molecular organization of the axo-glial contact, and identify a novel class of molecules in myelination. | Immunohistochemistry | | 26383514
|
AAV1.NT-3 gene therapy for charcot-marie-tooth neuropathy. Sahenk, Z; Galloway, G; Clark, KR; Malik, V; Rodino-Klapac, LR; Kaspar, BK; Chen, L; Braganza, C; Montgomery, C; Mendell, JR Molecular therapy : the journal of the American Society of Gene Therapy
22
511-21
2014
Mostrar Resumo
Charcot-Marie-Tooth (CMT) neuropathies represent a heterogeneous group of peripheral nerve disorders affecting 1 in 2,500 persons. One variant, CMT1A, is a primary Schwann cell (SC) disorder, and represents the single most common variant. In previous studies, we showed that neurotrophin-3 (NT-3) improved the trembler(J) (Tr(J)) mouse and also showed efficacy in CMT1A patients. Long-term treatment with NT-3 was not possible related to its short half-life and lack of availability. This led to considerations of NT-3 gene therapy via adenoassociated virus (AAV) delivery to muscle, acting as secretory organ for widespread distribution of this neurotrophic agent. In the Tr(J) model of demyelinating CMT, rAAV1.NT-3 therapy resulted in measurable NT-3 secretion levels in blood sufficient to provide improvement in motor function, histopathology, and electrophysiology of peripheral nerves. Furthermore, we showed that the compound muscle action potential amplitude can be used as surrogate for functional improvement and established the therapeutic dose and a preferential muscle-specific promoter to achieve sustained NT-3 levels. These studies of intramuscular (i.m.) delivery of rAAV1.NT-3 serve as a template for future CMT1A clinical trials with a potential to extend treatment to other nerve diseases with impaired nerve regeneration. | | | 24162799
|
Use of a synthetic xeno-free culture substrate for induced pluripotent stem cell induction and retinal differentiation. Tucker, BA; Anfinson, KR; Mullins, RF; Stone, EM; Young, MJ Stem cells translational medicine
2
16-24
2013
Mostrar Resumo
The purpose of this study was to determine whether a proprietary xeno-free synthetic culture surface could be used to aid in the production and subsequent retinal-specific differentiation of clinical-grade induced pluripotent stem cells (iPSCs). iPSCs were generated using adult somatic cells via infection with either a single cre-excisable lentiviral vector or four separate nonintegrating Sendai viruses driving expression of the transcription factors OCT4, SOX2, KLF4, and c-MYC. Retinal precursor cells were derived via targeted differentiation of iPSCs with exogenous delivery of dkk-1, noggin, insulin-like growth factor-1, basic fibroblast growth factor, acidic fibroblast growth factor, and DAPT. Phase contrast microscopy, immunocytochemistry, hematoxylin and eosin staining, and reverse transcription-polymerase chain reaction were used to determine reprogramming efficiency, pluripotency, and fate of undifferentiated and differentiated iPSCs. Following viral transduction, cells underwent prototypical morphological changes resulting in the formation of iPSC colonies large enough for manual isolation/passage at 3-4 weeks postinfection. Both normal and disease-specific iPSCs expressed markers of pluripotency and, following transplantation into immune-compromised mice, formed teratomas containing tissue comprising all three germ layers. When subjected to our established retinal differentiation protocol, a significant proportion of the xeno-free substrate-derived cells expressed retinal cell markers, the number of which did not significantly differ from that derived on traditional extracellular matrix-coated dishes. Synthetic cell culture substrates provide a useful surface for the xeno-free production, culture, and differentiation of adult somatic cell-derived iPSCs. These findings demonstrate the potential utility of these surfaces for the production of clinical-grade retinal neurons for transplantation and induction of retinal regeneration. | | | 23283489
|
Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid. Andres, D; Keyser, BM; Petrali, J; Benton, B; Hubbard, KS; McNutt, PM; Ray, R BMC neuroscience
14
49
2013
Mostrar Resumo
Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells.We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG.Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity. | | | 23597229
|
TrkB signaling directs the incorporation of newly generated periglomerular cells in the adult olfactory bulb. Bergami, M; Vignoli, B; Motori, E; Pifferi, S; Zuccaro, E; Menini, A; Canossa, M The Journal of neuroscience : the official journal of the Society for Neuroscience
33
11464-78
2013
Mostrar Resumo
In the adult rodent brain, the olfactory bulb (OB) is continuously supplied with new neurons which survival critically depends on their successful integration into pre-existing networks. Yet, the extracellular signals that determine the selection which neurons will be ultimately incorporated into these circuits are largely unknown. Here, we show that immature neurons express the catalytic form of the brain-derived neurotrophic factor receptor TrkB [full-length TrkB (TrkB-FL)] only after their arrival in the OB, at the time when integration commences. To unravel the role of TrkB signaling in newborn neurons, we conditionally ablated TrkB-FL in mice via Cre expression in adult neural stem and progenitor cells. TrkB-deficient neurons displayed a marked impairment in dendritic arborization and spine growth. By selectively manipulating the signaling pathways initiated by TrkB in vivo, we identified the transducers Shc/PI3K to be required for dendritic growth, whereas the activation of phospholipase C-γ was found to be responsible for spine formation. Furthermore, long-term genetic fate mapping revealed that TrkB deletion severely compromised the survival of new dopaminergic neurons, leading to a substantial reduction in the overall number of adult-generated periglomerular cells (PGCs), but not of granule cells (GCs). Surprisingly, this loss of dopaminergic PGCs was mirrored by a corresponding increase in the number of calretinin+ PGCs, suggesting that distinct subsets of adult-born PGCs may respond differentially to common extracellular signals. Thus, our results identify TrkB signaling to be essential for balancing the incorporation of defined classes of adult-born PGCs and not GCs, reflecting their different mode of integration in the OB. | | | 23843518
|
A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration. Boulland, JL; Lambert, FM; Züchner, M; Ström, S; Glover, JC PloS one
8
e71701
2013
Mostrar Resumo
Despite limited regeneration capacity, partial injuries to the adult mammalian spinal cord can elicit variable degrees of functional recovery, mediated at least in part by reorganization of neuronal circuitry. Underlying mechanisms are believed to include synaptic plasticity and collateral sprouting of spared axons. Because plasticity is higher in young animals, we developed a spinal cord compression (SCC) injury model in the neonatal mouse to gain insight into the potential for reorganization during early life. The model provides a platform for high-throughput assessment of functional synaptic connectivity that is also suitable for testing the functional integration of human stem and progenitor cell-derived neurons being considered for clinical cell replacement strategies. SCC was generated at T9-T11 and functional recovery was assessed using an integrated approach including video kinematics, histology, tract tracing, electrophysiology, and high-throughput optical recording of descending inputs to identified spinal neurons. Dramatic degeneration of axons and synaptic contacts was evident within 24 hours of SCC, and loss of neurons in the injured segment was evident for at least a month thereafter. Initial hindlimb paralysis was paralleled by a loss of descending inputs to lumbar motoneurons. Within 4 days of SCC and progressively thereafter, hindlimb motility began to be restored and descending inputs reappeared, but with examples of atypical synaptic connections indicating a reorganization of circuitry. One to two weeks after SCC, hindlimb motility approached sham control levels, and weight-bearing locomotion was virtually indistinguishable in SCC and sham control mice. Genetically labeled human fetal neural progenitor cells injected into the injured spinal cord survived for at least a month, integrated into the host tissue and began to differentiate morphologically. This integrative neonatal mouse model provides opportunities to explore early adaptive plasticity mechanisms underlying functional recovery as well as the capacity for human stem cell-derived neurons to integrate functionally into spinal circuits. | | | 23990976
|
Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Liu, Q; Spusta, SC; Mi, R; Lassiter, RN; Stark, MR; Höke, A; Rao, MS; Zeng, X Stem cells translational medicine
1
266-78
2012
Mostrar Resumo
The neural crest (NC) is a transient, multipotent, migratory cell population unique to vertebrates that gives rise to diverse cell lineages. Much of our knowledge of NC development comes from studies of organisms such as chicken and zebrafish because human NC is difficult to obtain because of its transient nature and the limited availability of human fetal cells. Here we examined the process of NC induction from human pluripotent stem cells, including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). We showed that NC cells could be efficiently induced from hESCs by a combination of growth factors in medium conditioned on stromal cells and that NC stem cells (NCSCs) could be purified by p75 using fluorescence-activated cell sorting (FACS). FACS-isolated NCSCs could be propagated in vitro in five passages and cryopreserved while maintaining NCSC identity characterized by the expression of a panel of NC markers such as p75, Sox9, Sox10, CD44, and HNK1. In vitro-expanded NCSCs were able to differentiate into neurons and glia (Schwann cells) of the peripheral nervous system, as well as mesenchymal derivatives. hESC-derived NCSCs appeared to behave similarly to endogenous embryonic NC cells when injected in chicken embryos. Using a defined medium, we were able to generate and propagate a nearly pure population of Schwann cells that uniformly expressed glial fibrillary acidic protein, S100, and p75. Schwann cells generated by our protocol myelinated rat dorsal root ganglia neurons in vitro. To our knowledge, this is the first report on myelination by hESC- or iPSC-derived Schwann cells. | | | 23197806
|
Involvement of endoplasmic reticulum stress in optic nerve degeneration following N-methyl-D-aspartate-induced retinal damage in mice. Masamitsu Shimazawa,Akinori Miwa,Yasushi Ito,Kazuhiro Tsuruma,Makoto Aihara,Hideaki Hara Journal of neuroscience research
90
2012
Mostrar Resumo
We evaluated time-dependent optic nerve degeneration and the role of endoplasmic reticulum (ER) stress in this process following retinal ganglion cell death in mice. Retinal damage was induced by intravitreal injection of N-methyl-D-aspartate (NMDA). Neurofilament heavy (NFH)- and phosphorylated NFH (pNFH)-positive axons were time-dependently decreased in optic nerves at 1, 3, 7, 14, and 28 days after NMDA injection. Expression of glial fibrillary acidic protein (GFAP)-positive astroglial cells and ionized calcium-binding adaptor molecule 1 (Iba1)-positive microglial cells showed a significant increase in the optic nerve at 7, 14, and 28 days after NMDA injection. In contrast, expression of myelin basic protein (MBP)-positive oligodendrocytes showed a significant decrease in the optic nerve at 7, 14, and 28 days after NMDA injection. In quantitative RT-PCR analysis, expressions of glucose-regulated protein 78 (Grp78)/BiP, Grp94, Calreticulin, C/EBP homologous protein (Chop), and the ER degradation enhancer mannosidase alpha-like 1 (Edem1) genes were increased in the optic nerve at 14 days after NMDA injection. In addition, the Grp94 gene was increased at 7 days after NMDA injection, and the Edem1 gene was increased at 3, 7, and 28 days after NMDA injection. GRP78 and CHOP proteins were colocalized with MBP in the optic nerve after NMDA injection. These findings suggest that the axonal degeneration is dramatic until 7 days after NMDA injection and that glial cells may play some role in the degeneration of the optic nerve. Furthermore, ER stress may play a pivotal role in the decrease of MBP-positive oligodendrocytes after NMDA-induced retinal damage. © 2012 Wiley Periodicals, Inc. | | | 22674348
|
Subarachnoid Transplant of the Human Neuronal hNT2.19 Serotonergic Cell Line Attenuates Behavioral Hypersensitivity without Affecting Motor Dysfunction after Severe Contusive Spinal Cord Injury. Eaton, MJ; Widerström-Noga, E; Wolfe, SQ Neurology research international
2011
891605
2011
Mostrar Resumo
Transplant of cells which make biologic agents that can modulate the sensory and motor responses after spinal cord injury (SCI) would be useful to treat pain and paralysis. To address this need for clinically useful human cells, a unique neuronal cell line that synthesizes and secretes/releases the neurotransmitter serotonin (5HT) was isolated. Hind paw tactile allodynia and thermal hyperalgesia induced by severe contusive SCI were potently reversed after lumbar subarachnoid transplant of differentiated cells, but had no effect on open field motor scores, stride length, foot rotation, base of support, or gridwalk footfall errors associated with the SCI. The sensory effects appeared 1 week after transplant and did not diminish during the 8-week course of the experiment when grafts were placed 2 weeks after SCI. Many grafted cells were still present and synthesizing 5HT at the end of the study. These data suggest that the human neuronal serotonergic hNT2.19 cells can be used as a biologic minipump for receiving SCI-related neuropathic pain, but likely requires intraspinal grafts for motor recovery. | | | 21799949
|