Subset of early radial glial progenitors that contribute to the development of callosal neurons is absent from avian brain. García-Moreno, F; Molnár, Z Proceedings of the National Academy of Sciences of the United States of America
112
E5058-67
2015
Mostrar Resumo
The classical view of mammalian cortical development suggests that pyramidal neurons are generated in a temporal sequence, with all radial glial cells (RGCs) contributing to both lower and upper neocortical layers. A recent opposing proposal suggests there is a subgroup of fate-restricted RGCs in the early neocortex, which generates only upper-layer neurons. Little is known about the existence of fate restriction of homologous progenitors in other vertebrate species. We investigated the lineage of selected Emx2+ [vertebrate homeobox gene related to Drosophila empty spiracles (ems)] RGCs in mouse neocortex and chick forebrain and found evidence for both sequential and fate-restricted programs only in mouse, indicating that these complementary populations coexist in the developing mammalian but not avian brain. Among a large population of sequentially programmed RGCs in the mouse brain, a subset of self-renewing progenitors lack neurogenic potential during the earliest phase of corticogenesis. After a considerable delay, these progenitors generate callosal upper-layer neurons and glia. On the other hand, we found no homologous delayed population in any sectors of the chick forebrain. This finding suggests that neurogenic delay of selected RGCs may be unique to mammals and possibly associated with the evolution of the corpus callosum. | | | 26305942
|
An integrated assessment of histopathological changes of the enteric neuromuscular compartment in experimental colitis. Ippolito, C; Segnani, C; Errede, M; Virgintino, D; Colucci, R; Fornai, M; Antonioli, L; Blandizzi, C; Dolfi, A; Bernardini, N Journal of cellular and molecular medicine
19
485-500
2015
Mostrar Resumo
Bowel inflammatory fibrosis has been largely investigated, but an integrated assessment of remodelling in inflamed colon is lacking. This study evaluated tissue and cellular changes occurring in colonic wall upon induction of colitis, with a focus on neuromuscular compartment. Colitis was elicited in rats by 2,4-dinitrobenzenesulfonic acid (DNBS). After 6 and 21 days, the following parameters were assessed on paraffin sections from colonic samples: tissue injury and inflammatory infiltration by histology; collagen and elastic fibres by histochemistry; HuC/D, glial fibrillar acidic protein (GFAP), proliferating cell nuclear antigen (PCNA), nestin, substance P (SP), von Willebrand factor, c-Kit and transmembrane 16A/Anoctamin1 (TMEM16A/ANO1) by immunohistochemistry. TMEM16A/ANO1 was also examined in isolated colonic smooth muscle cells (ICSMCs). On day 6, inflammatory alterations and fibrosis were present in DNBS-treated rats; colonic wall thickening and fibrotic remodelling were evident on day 21. Colitis was associated with both an increase in collagen fibres and a decrease in elastic fibres. Moreover, the neuromuscular compartment of inflamed colon displayed a significant decrease in neuron density and increase in GFAP/PCNA-positive glia of myenteric ganglia, enhanced expression of neural SP, blood vessel remodelling, reduced c-Kit- and TMEM16A/ANO1-positive interstitial cells of Cajal (ICCs), as well as an increase in TMEM16A/ANO1 expression in muscle tissues and ICSMCs. The present findings provide an integrated view of the inflammatory and fibrotic processes occurring in the colonic neuromuscular compartment of rats with DNBS-induced colitis. These morphological alterations may represent a suitable basis for understanding early pathophysiological events related to bowel inflammatory fibrosis. | | | 25521239
|
Double minute amplification of mutant PDGF receptor α in a mouse glioma model. Zou, H; Feng, R; Huang, Y; Tripodi, J; Najfeld, V; Tsankova, NM; Jahanshahi, M; Olson, LE; Soriano, P; Friedel, RH Scientific reports
5
8468
2015
Mostrar Resumo
In primary brain tumors, oncogenes are frequently amplified and maintained on extrachromosomal DNA as double minutes (DM), but the underlying mechanisms remain poorly understood. We have generated a mouse model of malignant glioma based on knock-in of a mutant PDGF receptor α (PDGFRα) that is expressed in oligodendrocyte precursor cells (OPCs) after activation by a Cre recombinase. In the tumor suppressor INK4/Arf(-/-) background, mutant animals frequently developed brain tumors resembling anaplastic human gliomas (WHO grade III). Besides brain tumors, most animals also developed aggressive fibrosarcomas, likely triggered by Cre activation of mutant PDGFRα in fibroblastic cell lineages. Importantly, in the brain tumors and cell lines derived from brain tumor tissues, we identified a high prevalence of DM Pdgfra gene amplification, suggesting its occurrence as an early mutational event contributing to the malignant transformation of OPCs. Amplicons extended beyond the Pdgfra locus and included in some cases neighboring genes Kit and Kdr. Our genetically defined mouse brain tumor model therefore supports OPC as a cell of origin for malignant glioma and offers an example of a defined temporal sequence of mutational events, thus providing an entry point for a mechanistic understanding of DM gene amplification and its functionality in gliomagenesis. | | | 25683249
|
Neuroprotective effects of oligodendrocyte progenitor cell transplantation in premature rat brain following hypoxic-ischemic injury. Chen, LX; Ma, SM; Zhang, P; Fan, ZC; Xiong, M; Cheng, GQ; Yang, Y; Qiu, ZL; Zhou, WH; Li, J PloS one
10
e0115997
2015
Mostrar Resumo
Periventricular leukomalacia (PVL) is a common ischemic brain injury in premature infants for which there is no effective treatment. The objective of this study was to determine whether transplanted mouse oligodendrocyte progenitor cells (OPCs) have neuroprotective effects in a rat model of PVL. Hypoxia-ischemia (HI) was induced in 3-day-old rat pups by left carotid artery ligation, followed by exposure to 6% oxygen for 2.5 h. Animals were assigned to OPC transplantation or sham control groups and injected with OPCs or PBS, respectively, and sacrificed up to 6 weeks later for immunohistochemical analysis to investigate the survival and differentiation of transplanted OPCs. Apoptosis was evaluated by double immunolabeling of brain sections for caspase-3 and neuronal nuclei (NeuN), while proliferation was assessed using a combination of anti-Nestin and -bromodeoxyuridine antibodies. The expression of brain-derived neurotrophic factor (BDNF) and Bcl-2 was examined 7 days after OPC transplantation. The Morris water maze was used to test spatial learning and memory. The results showed that transplanted OPCs survived and formed a myelin sheath, and stimulated BDNF and Bcl-2 expression and the proliferation of neural stem cells (NSC), while inhibiting HI-induced neuronal apoptosis relative to control animals. Moreover, deficits in spatial learning and memory resulting from HI were improved by OPC transplantation. These results demonstrate an important neuroprotective role for OPCs that can potentially be exploited in cell-based therapeutic approaches to minimize HI-induced brain injury. | | | 25790286
|
Periostin Promotes Neural Stem Cell Proliferation and Differentiation following Hypoxic-Ischemic Injury. Ma, SM; Chen, LX; Lin, YF; Yan, H; Lv, JW; Xiong, M; Li, J; Cheng, GQ; Yang, Y; Qiu, ZL; Zhou, WH PloS one
10
e0123585
2015
Mostrar Resumo
Neural stem cell (NSC) proliferation and differentiation are required to replace neurons damaged or lost after hypoxic-ischemic events and recover brain function. Periostin (POSTN), a novel matricellular protein, plays pivotal roles in the survival, migration, and regeneration of various cell types, but its function in NSCs of neonatal rodent brain is still unknown. The purpose of this study was to investigate the role of POSTN in NSCs following hypoxia-ischemia (HI). We found that POSTN mRNA levels significantly increased in differentiating NSCs. The proliferation and differentiation of NSCs in the hippocampus is compromised in POSTN knockout mice. Moreover, NSC proliferation and differentiation into neurons and astrocytes significantly increased in cultured NSCs treated with recombinant POSTN. Consistently, injection of POSTN into neonatal hypoxic-ischemic rat brains stimulated NSC proliferation and differentiation in the subventricular and subgranular zones after 7 and 14 days of brain injury. Lastly, POSTN treatment significantly improved the spatial learning deficits of rats subjected to HI. These results suggest that POSTN significantly enhances NSC proliferation and differentiation after HI, and provides new insights into therapeutic strategies for the treatment of hypoxic-ischemic encephalopathy. | | | 25894199
|
Skin regeneration in deep second-degree scald injuries either by infusion pumping or topical application of recombinant human erythropoietin gel. Giri, P; Ebert, S; Braumann, UD; Kremer, M; Giri, S; Machens, HG; Bader, A Drug design, development and therapy
9
2565-79
2015
Mostrar Resumo
Large doses of recombinant growth factors formulated in solution form directly injected into the body is usual clinical practice in treating second-degree scald injuries, with promising results, but this approach creates side effects; furthermore, it may not allow appropriate levels of the factor to be sensed by the target injured tissue/organ in the specific time frame, owing to complications arising from regeneration. In this research, two delivery methods (infusion pumping and local topical application) were applied to deliver recombinant human erythropoietin (rHuEPO) for skin regeneration. First, rHuEPO was given in deep second-degree scald injury sites in mice by infusion pump. Vascularization was remarkably higher in the rHuEPO pumping group than in controls. Second, local topical application of rHuEPO gel was given in deep second-degree scald injury sites in rats. Histological analysis showed that epithelialization rate was significantly higher in the rHuEPO gel-treated group than in controls. Immunohistochemical studies showed that the rHuEPO gel-treated group showed remarkably higher expression of skin regeneration makers than the control group. An accurate method for visualization and quantification of blood vessel networks in target areas has still not been developed up to this point, because of technical difficulties in detecting such thin blood vessels. A method which utilizes a series of steps to enhance the image, removes noise from image background, and tracks the vessels edges for vessel segmentation and quantification has been used in this study. Using image analysis methods, we were able to detect the microvascular networks of newly formed blood vessels (less than 500 μm thickness), which participate in the healing process, providing not only nutrition and oxygen to grow tissues but also necessary growth factors to grow tissue cells for complete skin regeneration. The rHuEPO-treated group showed higher expression of stem cell markers (CD 31, CD 90, CD 71, and nestin), which actively contribute to in-wound-healing processes for new hair follicle generation as well as skin regeneration. Collectively, both rHuEPO group pumping into the systemic circulation system, and injection into the local injury area, prompted mice and rats to form new blood vessel networks in scald injury sites, which significantly participate in the scald healing process. These results may lead to the development of novel treatments for scald wounds. | | | 26005333
|
Cdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex. Ye, T; Ip, JP; Fu, AK; Ip, NY Nature communications
5
4826
2014
Mostrar Resumo
During cerebral cortex development, pyramidal neurons migrate through the intermediate zone and integrate into the cortical plate. These neurons undergo the multipolar-bipolar transition to initiate radial migration. While perturbation of this polarity acquisition leads to cortical malformations, how this process is initiated and regulated is largely unknown. Here we report that the specific upregulation of the Rap1 guanine nucleotide exchange factor, RapGEF2, in migrating neurons corresponds to the timing of this polarity transition. In utero electroporation and live-imaging studies reveal that RapGEF2 acts on the multipolar-bipolar transition during neuronal migration via a Rap1/N-cadherin pathway. Importantly, activation of RapGEF2 is controlled via phosphorylation by a serine/threonine kinase Cdk5, whose activity is largely restricted to the radial migration zone. Thus, the specific expression and Cdk5-dependent phosphorylation of RapGEF2 during multipolar-bipolar transition within the intermediate zone are essential for proper neuronal migration and wiring of the cerebral cortex. | | | 25189171
|
The neuron regrowth is associated with the proliferation of neural precursor cells after leukemia inhibitory factor administration following spinal cord injury in mice. Li, Y; Zang, D PloS one
9
e116031
2014
Mostrar Resumo
To explore whether LIF could promote the proliferation of neural precursor cells (NPCs) and to analyze the correlation between increased NPCs and FluoroGold (FG) labeled neurons in mice after spinal cord injury (SCI).Motor behavior was assessed using Rotarod and Platform Hang tests; neurons in the corticospinal and rubrospinal systems were labeled with FG, NPCs were immustained with nestin-FITC conjugate. The numbers of FG-labeled neurons and NPCs were estimated, and the correlation between FG-labeled neurons and NPCs was assessed.Mice in the SCI group showed negligible recovery of locomotor behavior; in contrast, mice in the LIF group showed a statically significant improvement. Both FG-labeled neurons and NPCs were significantly increased in the LIF group compared to the SCI group, and this increase in FG-labeled neurons and NPCs showed a clear association above the lesion level.LIF could promote locomotive behaviors in mice post-SCI by encouraging the proliferation of NPCs; LIF may in fact be a potential cytokine for the induction of NPCs post-SCI. | | | 25542011
|
Maintenance and neuronal differentiation of chicken induced pluripotent stem-like cells. Dai, R; Rossello, R; Chen, CC; Kessler, J; Davison, I; Hochgeschwender, U; Jarvis, ED Stem cells international
2014
182737
2014
Mostrar Resumo
Pluripotent stem cells have the potential to become any cell in the adult body, including neurons and glia. Avian stem cells could be used to study questions, like vocal learning, that would be difficult to examine with traditional mouse models. Induced pluripotent stem cells (iPSCs) are differentiated cells that have been reprogrammed to a pluripotent stem cell state, usually using inducing genes or other molecules. We recently succeeded in generating avian iPSC-like cells using mammalian genes, overcoming a limitation in the generation and use of iPSCs in nonmammalian species (Rosselló et al., 2013). However, there were no established optimal cell culture conditions for avian iPSCs to establish long-term cell lines and thus to study neuronal differentiation in vitro. Here we present an efficient method of maintaining chicken iPSC-like cells and for differentiating them into action potential generating neurons. | | | 25610469
|
Subplate in a rat model of preterm hypoxia-ischemia. Okusa, C; Oeschger, F; Ginet, V; Wang, WZ; Hoerder-Suabedissen, A; Matsuyama, T; Truttmann, AC; Molnár, Z Annals of clinical and translational neurology
1
679-91
2014
Mostrar Resumo
Hypoxia-ischemia (HI) in preterm infants primarily leads to injuries in the cerebral white matter. However, there is growing evidence that perinatal injury in preterms can also involve other zones including the cortical gray matter. In a neonatal rat model of HI, selective vulnerability of subplate has been suggested using BrdU birth-dating methods. In this study, we aimed to investigate the neuropathological changes of the subplate and deep layers of the cortex following cerebral HI in neonatal rats with specific cell markers.P2 rats underwent permanent occlusion of the right common carotid artery followed by a period of hypoxia. P8 rats were analyzed using immunohistochemistry; subplate and deep layers cells were quantified and compared with sham-operated case.A large variability in the extent of the cerebral injury was apparent. For the three analyzed subplate populations (Nurr1+, Cplx3+, and Ctgf+ cells), no significant cell reduction was observed in mild and moderate cases. Only in severe cases, subplate cells were strongly affected, but these injuries were always accompanied by the cell reductions in layers VI and V.We could therefore not confirm a specific vulnerability of subplate cells compared to other deep layers or the white matter in our model. | | | 25493282
|