AduPARE1A and gemcitabine combined treatment trigger synergistic antitumor effects in pancreatic cancer through NF-κB mediated uPAR activation. Maliandi, MV; Mato-Berciano, A; Sobrevals, L; Roué, G; José, A; Fillat, C Molecular cancer
14
146
2015
Mostrar Resumo
Combined treatment of oncolytic adenoviruses with chemotherapeutic agents is foreseen as a therapeutic option for cancer. Here we have investigated the potential to use gemcitabine in combination with the oncolytic adenovirus AduPARE1A to treat pancreatic cancer and evaluate the underlying mechanism.We treated pancreatic cancer cell lines BxPC-3 and PANC-1 with AduPARE1A and gemcitabine individually or in combination and analyzed cell viability, combination index, apoptosis and viral production. We also investigated the effects of the combination on tumor growth and mice survival in two xenograft models. Furthermore, we analyzed uPAR promoter activity from different uPAR-controlled adenovirus and studied NF-κB mediated effects.Synergistic cell killing from the combination AduPARE1A/Gemcitabine was observed in BxPC-3 and PANC-1 cells. Moreover, the combination treatment produced therapeutic benefits over either individual modality in two mouse models bearing orthotopic tumors, showing reduced tumor progression and significant prolonged mouse survival. Mechanistic studies showed that the synergistic cell death was not due to an increase in viral replication but occurred through an enhancement of apoptotic cell death. Gemcitabine stimulation increased the transcription of uPAR-controlled transgenes through the induction of NF-κB acting on the uPAR promoter. Interestingly, NF-κB gemcitabine-mediated induction of AduPAR adenoviruses interfered with the activation of NF-κB regulated genes, probably as a result of an intracellular competition for NF-κB DNA binding. Consequently, AduPARE1A infection sensitized cells to gemcitabine-induced apoptosis in the combined treatment.These data highlights the potential of the combination as a treatment modality for pancreatic cancer patients. | | | 26227809
|
Activation of peroxisome proliferator-activated receptor γ ameliorates monocrotaline-induced pulmonary arterial hypertension in rats. Xie, X; Wang, G; Zhang, D; Zhang, Y; Zhu, Y; Li, F; Li, S; Li, M Biomedical reports
3
537-542
2015
Mostrar Resumo
Activation of peroxisome proliferator-activated receptor γ (PPARγ) suppresses the proliferation of pulmonary artery smooth muscle cells (PASMCs) and vascular remodeling in rats and humans, and therefore improves the development of pulmonary arterial hypertension (PAH). However, molecular mechanisms underlying these effects have not been completely understood. In the present study, the effects of PPARγ activation in monocrotaline (MCT)-induced pulmonary artery remodeling in rats were investigated. Eighteen Sprague-Dawley (SD) rats were randomly assigned into three groups (n=6): Control (Con), PAH and PAH treated with rosiglitazone (MCT + Rosi). The right ventricular systolic pressure (RVSP), the ratio of the right to left ventricle plus septum weight [RV/(LV + S)], the percentage of medial wall thickness (%MT) and wall area (%WA) were used to evaluate the development of PAH. Tissue morphology was measured using hematoxylin and eosin staining. The protein levels of the phosphatase and tensin homologue deleted on chromosome ten (PTEN), Akt (ser473) phosphorylation (p-Akt) and total Akt in intrapulmonary arteries were determined by western blot analysis. MCT treatment significantly increased the RVSP, which was reduced by rosiglitazone treatment. The ratio of RV/(LV + S), %MT and %WA induced by MCT were similarly inhibited, which was associated with the increase of PTEN expression and the inhibition of Akt phosphorylation levels by rosiglitazone. In conclusion, activation of PPARγ ameliorates the proliferation of PASMCs and vascular remodeling by regulating the PTEN/PI3K/Akt pathway, suggesting that the activation of PPARγ has potential benefits for PAH. | | | 26171162
|
Receptor-interacting protein kinases modulate noise-induced sensory hair cell death. Zheng, HW; Chen, J; Sha, SH Cell death & disease
5
e1262
2014
Mostrar Resumo
Receptor-interacting protein (RIP) kinases promote the induction of necrotic cell death pathways. Here we investigated signaling pathways in outer hair cells (OHCs) of adult male CBA/J mice exposed to noise that causes permanent threshold shifts, with a particular focus on RIP kinase-regulated necroptosis. One hour after noise exposure, nuclei of OHCs in the basal region of the cochlea displayed both apoptotic and necrotic features. RIP1 and RIP3 protein levels increased and caspase-8 was activated. Treatment with pan-caspase inhibitor ZVAD blocked the activation of caspase-8 and reduced the number of apoptotic nuclei, while increasing levels of RIP1, RIP3, and necrotic OHCs. Conversely, treatment with necrosis inhibitor necrostatin-1 (Nec-1) or RIP3 siRNA (siRIP3) diminished noise-induced increases in RIP1 and RIP3, and decreased necrotic OHC nuclei. This treatment also increased the number of apoptotic nuclei without increasing activation of caspase-8. Consistent with the elevation of levels of RIP1 and RIP3, noise-induced active AMPKα levels increased with ZVAD treatment, but decreased with Nec-1 and siRIP3 treatment. Furthermore, treatment with siRIP3 did not alter the activation of caspase-8, but instead increased activation of caspase-9 and promoted endonuclease G translocation into OHC nuclei. Finally, auditory brainstem response functional measurements and morphological assessment of OHCs showed that ZVAD treatment reduces noise-induced deficits. This protective function is potentiated when combined with siRIP3 treatment. In conclusion, noise-induced OHC apoptosis and necrosis are modulated by caspases and RIP kinases, respectively. Inhibition of either pathway shifts the prevalence of OHC death to the alternative pathway. | Western Blotting | | 24874734
|
Contribution of transcription factor, SP1, to the promotion of HB-EGF expression in defense mechanism against the treatment of irinotecan in ovarian clear cell carcinoma. Miyata, K; Yotsumoto, F; Nam, SO; Odawara, T; Manabe, S; Ishikawa, T; Itamochi, H; Kigawa, J; Takada, S; Asahara, H; Kuroki, M; Miyamoto, S Cancer medicine
3
1159-69
2014
Mostrar Resumo
Ovarian clear cell carcinoma (OCCC) is a worst histological subtype than other ovarian malignant tumor. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a promising target for ovarian cancer therapy. The aims of this study were to validate the efficacy of HB-EGF-targeted therapy for OCCC and to identify the transcription factor that contributed to the induction of HB-EGF by SN38 treatment in OCCC cells. HB-EGF was highly expressed in OCCC cells, and an increase of HB-EGF was induced by SN38 which had only antitumor effect among conventional anticancer agents on OCCC. A specific inhibitor of HB-EGF, a cross-reacting material 197 (CRM197), led to a synergistic increase in the number of apoptotic OCCC cells with the treatment of SN38. The luciferase assay with 5'-deletion promoter constructs identified a GC-rich element between -125 and -178 (the distal transcription start site was denoted +1) as a cis-regulatory region, and the treatment of SN38 induced luciferase activity in this region. An in silico and chromatin immunoprecipitation analysis estimated that SP1 bound to the cis-regulatory region of HB-EGF in OCCC cells. Real-time PCR and cell viability assays showed that the transfection of a small interfering RNA targeting SP1 suppressed the expression of HB-EGF induced by SN38, resulting in the enhanced sensitivity of SN38. Taken together, these results indicate that induction of HB-EGF expression contributed to defense mechanism against treatment of SN38 through the transcriptional activity of SP1 in OCCC cells. | Western Blotting | | 25060396
|
Wnts enhance neurotrophin-induced neuronal differentiation in adult bone-marrow-derived mesenchymal stem cells via canonical and noncanonical signaling pathways. Tsai, HL; Deng, WP; Lai, WF; Chiu, WT; Yang, CB; Tsai, YH; Hwang, SM; Renshaw, PF PloS one
9
e104937
2014
Mostrar Resumo
Wnts were previously shown to regulate the neurogenesis of neural stem or progenitor cells. Here, we explored the underlying molecular mechanisms through which Wnt signaling regulates neurotrophins (NTs) in the NT-induced neuronal differentiation of human mesenchymal stem cells (hMSCs). NTs can increase the expression of Wnt1 and Wnt7a in hMSCs. However, only Wnt7a enables the expression of synapsin-1, a synaptic marker in mature neurons, to be induced and triggers the formation of cholinergic and dopaminergic neurons. Human recombinant (hr)Wnt7a and general neuron makers were positively correlated in a dose- and time-dependent manner. In addition, the expression of synaptic markers and neurites was induced by Wnt7a and lithium, a glycogen synthase kinase-3β inhibitor, in the NT-induced hMSCs via the canonical/β-catenin pathway, but was inhibited by Wnt inhibitors and frizzled-5 (Frz5) blocking antibodies. In addition, hrWnt7a triggered the formation of cholinergic and dopaminergic neurons via the non-canonical/c-jun N-terminal kinase (JNK) pathway, and the formation of these neurons was inhibited by a JNK inhibitor and Frz9 blocking antibodies. In conclusion, hrWnt7a enhances the synthesis of synapse and facilitates neuronal differentiation in hMSCS through various Frz receptors. These mechanisms may be employed widely in the transdifferentiation of other adult stem cells. | Immunofluorescence | Human | 25170755
|
Comparison of the anti-prion mechanism of four different anti-prion compounds, anti-PrP monoclonal antibody 44B1, pentosan polysulfate, chlorpromazine, and U18666A, in prion-infected mouse neuroblastoma cells. Yamasaki, T; Suzuki, A; Hasebe, R; Horiuchi, M PloS one
9
e106516
2014
Mostrar Resumo
Molecules that inhibit the formation of an abnormal isoform of prion protein (PrP(Sc)) in prion-infected cells are candidate therapeutic agents for prion diseases. Understanding how these molecules inhibit PrP(Sc) formation provides logical basis for proper evaluation of their therapeutic potential. In this study, we extensively analyzed the effects of the anti-PrP monoclonal antibody (mAb) 44B1, pentosan polysulfate (PPS), chlorpromazine (CPZ) and U18666A on the intracellular dynamics of a cellular isoform of prion protein (PrP(C)) and PrP(Sc) in prion-infected mouse neuroblastoma cells to re-evaluate the effects of those agents. MAb 44B1 and PPS rapidly reduced PrP(Sc) levels without altering intracellular distribution of PrP(Sc). PPS did not change the distribution and levels of PrP(C), whereas mAb 44B1 appeared to inhibit the trafficking of cell surface PrP(C) to organelles in the endocytic-recycling pathway that are thought to be one of the sites for PrP(Sc) formation. In contrast, CPZ and U18666A initiated the redistribution of PrP(Sc) from organelles in the endocytic-recycling pathway to late endosomes/lysosomes without apparent changes in the distribution of PrP(C). The inhibition of lysosomal function by monensin or bafilomycin A1 after the occurrence of PrP(Sc) redistribution by CPZ or U18666A partly antagonized PrP(Sc) degradation, suggesting that the transfer of PrP(Sc) to late endosomes/lysosomes, possibly via alteration of the membrane trafficking machinery of cells, leads to PrP(Sc) degradation. This study revealed that precise analysis of the intracellular dynamics of PrP(C) and PrP(Sc) provides important information for understanding the mechanism of anti-prion agents. | | | 25181483
|
The miR-183/Taok1 target pair is implicated in cochlear responses to acoustic trauma. Patel, M; Cai, Q; Ding, D; Salvi, R; Hu, Z; Hu, BH PloS one
8
e58471
2013
Mostrar Resumo
Acoustic trauma, one of the leading causes of sensorineural hearing loss, induces sensory hair cell damage in the cochlea. Identifying the molecular mechanisms involved in regulating sensory hair cell death is critical towards developing effective treatments for preventing hair cell damage. Recently, microRNAs (miRNAs) have been shown to participate in the regulatory mechanisms of inner ear development and homeostasis. However, their involvement in cochlear sensory cell degeneration following acoustic trauma is unknown. Here, we profiled the expression pattern of miRNAs in the cochlear sensory epithelium, defined miRNA responses to acoustic overstimulation, and explored potential mRNA targets of miRNAs that may be responsible for the stress responses of the cochlea. Expression analysis of miRNAs in the cochlear sensory epithelium revealed constitutive expression of 176 miRNAs, many of which have not been previously reported in cochlear tissue. Exposure to intense noise caused significant threshold shift and apoptotic activity in the cochleae. Gene expression analysis of noise-traumatized cochleae revealed time-dependent transcriptional changes in the expression of miRNAs. Target prediction analysis revealed potential target genes of the significantly downregulated miRNAs, many of which had cell death- and apoptosis-related functions. Verification of the predicted targets revealed a significant upregulation of Taok1, a target of miRNA-183. Moreover, inhibition of miR-183 with morpholino antisense oligos in cochlear organotypic cultures revealed a negative correlation between the expression levels of miR-183 and Taok1, suggesting the presence of a miR-183/Taok1 target pair. Together, miRNA profiling as well as the target analysis and validation suggest the involvement of miRNAs in the regulation of the degenerative process of the cochlea following acoustic overstimulation. The miR-183/Taok1 target pair is likely to play a role in this regulatory process. | | | 23472202
|
Mitochondrial peroxiredoxin 3 regulates sensory cell survival in the cochlea. Chen, FQ; Zheng, HW; Schacht, J; Sha, SH PloS one
8
e61999
2013
Mostrar Resumo
This study delineates the role of peroxiredoxin 3 (Prx3) in hair cell death induced by several etiologies of acquired hearing loss (noise trauma, aminoglycoside treatment, age). In vivo, Prx3 transiently increased in mouse cochlear hair cells after traumatic noise exposure, kanamycin treatment, or with progressing age before any cell loss occurred; when Prx3 declined, hair cell loss began. Maintenance of high Prx3 levels via treatment with the radical scavenger 2,3-dihydroxybenzoate prevented kanamycin-induced hair cell death. Conversely, reducing Prx3 levels with Prx3 siRNA increased the severity of noise-induced trauma. In mouse organ of Corti explants, reactive oxygen species and levels of Prx3 mRNA and protein increased concomitantly at early times of drug challenge. When Prx3 levels declined after prolonged treatment, hair cells began to die. The radical scavenger p-phenylenediamine maintained Prx3 levels and attenuated gentamicin-induced hair cell death. Our results suggest that Prx3 is up-regulated in response to oxidative stress and that maintenance of Prx3 levels in hair cells is a critical factor in their susceptibility to acquired hearing loss. | | | 23626763
|
Laminin 511 partners with laminin 332 to mediate directional migration of Madin-Darby canine kidney epithelial cells. Greciano, PG; Moyano, JV; Buschmann, MM; Tang, J; Lu, Y; Rudnicki, J; Manninen, A; Matlin, KS Molecular biology of the cell
23
121-36
2012
Mostrar Resumo
Sustained directional migration of epithelial cells is essential for regeneration of injured epithelia. Front-rear polarity of migrating cells is determined by local activation of a signaling network involving Cdc42 and other factors in response to spatial cues from the environment, the nature of which are obscure. We examined the roles of laminin (LM)-511 and LM-332, two structurally different laminin isoforms, in the migration of Madin-Darby canine kidney cells by suppressing expression of their α subunits using RNA interference. We determined that knockdown of LM-511 inhibits directional migration and destabilizes cell-cell contacts, in part by disturbing the localization and activity of the polarization machinery. Suppression of integrin α3, a laminin receptor subunit, in cells synthesizing normal amounts of both laminins has a similar effect as knockdown of LM-511. Surprisingly, simultaneous suppression of both laminin α5 and laminin α3 restores directional migration and cell-cell contact stability, suggesting that cells recognize a haptotactic gradient formed by a combination of laminins. | | | 22031290
|
Traumatic noise activates Rho-family GTPases through transient cellular energy depletion. Chen, FQ; Zheng, HW; Hill, K; Sha, SH The Journal of neuroscience : the official journal of the Society for Neuroscience
32
12421-30
2012
Mostrar Resumo
Small GTPases mediate transmembrane signaling and regulate the actin cytoskeleton in eukaryotic cells. Here, we characterize the auditory pathology of adult male CBA/J mice exposed to traumatic noise (2-20 kHz; 106 dB; 2 h). Loss of outer hair cells was evident 1 h after noise exposure in the basal region of the cochlea and spread apically with time, leading to permanent threshold shifts of 35, 60, and 65 dB at 8, 16, and 32 kHz. Several biochemical and molecular changes correlated temporally with the loss of cells. Immediately after exposure, the concentration of ATP decreased in cochlear tissue and reached a minimum after 1 h while the immunofluorescent signal for p-AMPKα significantly increased in sensory hair cells at that time. Levels of active Rac1 increased, whereas those of active RhoA decreased significantly 1 h after noise attaining a plateau at 1-3 h; the formation of a RhoA-p140mDia complex was consistent with an activation of Rho GTPase pathways. Also at 1-3 h after exposure, the caspase-independent cell death marker, Endo G, translocated to the nuclei of outer hair cells. Finally, experiments with the inner ear HEI-OC1 cell line demonstrated that the energy-depleting agent oligomycin enhanced both Rac1 activity and cell death. The sum of the results suggests that traumatic noise induces transient cellular ATP depletion and activates Rho GTPase pathways, leading to death of outer hair cells in the cochlea. | | | 22956833
|