Identification of novel Prominin-1/CD133 splice variants with alternative C-termini and their expression in epididymis and testis. Fargeas, Christine A, et al. J. Cell. Sci., 117: 4301-11 (2004)
2004
Mostrar Resumo
Prominin-1/CD133 is a five-membrane-span glycoprotein that is thought to act as an organizer of plasma-membrane protrusions. Here, we report the molecular and cell-biological characterization of four novel prominin-1 splice variants isolated from a mouse testis cDNA library and referred to as prominin-1.s3 to prominin-1.s6. Compared with kidney-derived prominin-1.s1, the s3, s4 and s5 variants contain a distinct cytoplasmic C-terminal domain. The s4 and s5 variants bear, in addition, two and one inframe deletion(s), respectively, in the extracellular domains. The s6 variant displays a truncated C-terminal domain caused by a premature termination resulting from intron retention. Upon their ectopic expression in Chinese hamster ovary cells, the s3 and s6 variants were found to be concentrated in plasma-membrane protrusions, whereas the s4 and s5 variants did not reach the cell surface. Biochemical analyses suggest that most of the prominin-1 in the adult male reproductive system is expressed as the s6 variant. Immunohistological and electron microscopic analyses show that prominin-1 is: (1) confined to the apical surface of the epithelium all along the epididymal duct, with the exception of the initial segment; (2) concentrated in stereocilia of the epididymal duct epithelium; and (3) found on the tail of developing spermatozoa in seminiferous tubules. Our data suggest that prominin-1 is involved in the formation and/or stabilization of epididymal stereocilia and the tail of spermatozoa, and hence might play a dual role in the biogenesis of spermatozoa. | | 15316084
|
AC133 antigen, CD133, prominin-1, prominin-2, etc.: prominin family gene products in need of a rational nomenclature. Fargeas, Christine A, et al. Stem Cells, 21: 506-8 (2003)
2003
| | 12832703
|
Generation of dopaminergic neurons in the adult brain from mesencephalic precursor cells labeled with a nestin-GFP transgene. Sawamoto, K, et al. J. Neurosci., 21: 3895-903 (2001)
2001
Mostrar Resumo
Mesencephalic precursor cells may one day provide dopaminergic neurons for the treatment of Parkinson's disease. However, the generation of dopaminergic neurons from mesencephalic precursors has been difficult to follow, partly because an appropriate means for recognizing mesencephalic ventricular zone precursors has not been available. To visualize and isolate mesencephalic precursor cells from a mixed population, we used transgenic mice and rats carrying green fluorescent protein (GFP) cDNA under the control of the nestin enhancer. nestin-driven GFP was detected in the mesencephalic ventricular zone, and it colocalized with specific markers for neural precursor cells. In addition, data from flow-cytometry indicated that Prominin/CD133, a cell-surface marker for ventricular zone cells, was expressed specifically in these GFP-positive (GFP(+)) cells. After sorting by fluorescence-activated cell sorting, the GFP(+) cells proliferated in vitro and expressed precursor cell markers but not neuronal markers. Using clonogenic sphere formation assays, we showed that this sorted population was enriched in multipotent precursor cells that could differentiate into both neurons and glia. Importantly, many neurons generated from nestin-GFP-sorted mesencephalic precursors developed a dopaminergic phenotype in vitro. Finally, nestin-GFP(+) cells were transplanted into the striatum of a rat model of Parkinson's disease. Bromodeoxyuridine-tyrosine hydroxylase double-labeling revealed that the transplanted cells generated new dopaminergic neurons within the host striatum. The implanted cells were able to restore dopaminergic function in the host striatum, as assessed by a behavioral measure: recovery from amphetamine-induced rotation. Together, these findings indicate that precursor cells harvested from the embryonic ventral mesencephalon can generate dopaminergic neurons able to restore function to the chemically denervated adult striatum. | | 11356877
|
Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Corbeil, D, et al. Traffic, 2: 82-91 (2001)
2001
Mostrar Resumo
Prominin is the first identified member of a novel family of polytopic membrane proteins conserved throughout the animal kingdom. It has an unusual membrane topology, containing five transmembrane domains and two large glycosylated extracellular loops. In mammals, prominin is expressed in various embryonic and adult epithelial cells, as well as in nonepithelial cells, such as hematopoietic stem cells. At the subcellular level, prominin is selectively localized in microvilli and other plasma membrane protrusions, irrespective of cell type. At the molecular level, prominin specifically interacts with membrane cholesterol and is a marker of a novel type of cholesterol-based lipid 'raft'. A frameshift mutation in the human prominin gene, which results in a truncated protein that is no longer transported to the cell surface, is associated with retinal degeneration. Given that prominin is concentrated in the plasma membrane evaginations at the base of the outer segment of rod photoreceptor cells, which are essential precursor structures in the biogenesis of photoreceptive disks, it is proposed that prominin has a role in the generation of plasma membrane protrusions, their lipid composition and organization and their membrane-to-membrane interactions. | | 11247306
|
A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Maw, M A, et al. Hum. Mol. Genet., 9: 27-34 (2000)
2000
Mostrar Resumo
The disks of vertebrate photoreceptors are produced by outgrowths of the plasma membrane. Hence genes that encode retinal proteins targeted to plasma membrane protrusions represent candidates for inherited retinal degenerations. One such candidate is the gene encoding human prominin (mouse)-like 1 (PROML1, previously known as AC133 antigen) which belongs to the prominin family of 5-transmembrane domain proteins. Murine prominin (prom) shows a strong preference for plasma membrane protrusions in a variety of epithelial cells whereas PROML1 is expressed in retinoblastoma cell lines and adult retina. In the present study, molecular genetic analyses of a pedigree segregating for autosomal recessive retinal degeneration indicated that the affected individuals were homozygous for a nucleotide 1878 deletion in PROML1. This alteration is predicted to result in a frameshift at codon 614 with premature termination of translation. Expression of a similar prom deletion mutant in CHO cells indicated that the truncated protein does not reach the cell surface. Immunocytochemistry revealed that prom is concentrated in the plasma membrane evaginations at the base of the outer segments of rod photoreceptors. These findings suggest that loss of prominin causes retinal degeneration, possibly because of impaired generation of the evaginations and/or impaired conversion of the evaginations to disks. | | 10587575
|
The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. Corbeil, D, et al. J. Biol. Chem., 275: 5512-20 (2000)
2000
Mostrar Resumo
The human AC133 antigen and mouse prominin are structurally related plasma membrane proteins. However, their tissue distribution is distinct, with the AC133 antigen being found on hematopoietic stem and progenitor cells and prominin on various epithelial cells. To determine whether the human AC133 antigen and mouse prominin are orthologues or distinct members of a protein family, we examined the human epithelial cell line Caco-2 for the possible expression of the AC133 antigen. By both immunofluorescence and immunoprecipitation, the AC133 antigen was found to be expressed on the surface of Caco-2 cells. Interestingly, immunoreactivity for the AC133 antigen, but not its mRNA level, was down-regulated upon differentiation of Caco-2 cells. The AC133 antigen was specifically located at the apical rather than basolateral plasma membrane. An apical localization of the AC133 antigen was also observed in various human embryonic epithelia including the neural tube, gut, and kidney. Electron microscopy revealed that, within the apical plasma membrane of Caco-2 cells, the AC133 antigen was confined to microvilli and absent from the planar, intermicrovillar regions. This specific subcellular localization did not depend on an epithelial phenotype, because the AC133 antigen on hematopoietic stem cells, as well as that ectopically expressed in fibroblasts, was selectively found in plasma membrane protrusions. Hence, the human AC133 antigen shows the features characteristic of mouse prominin in epithelial and transfected non-epithelial cells, i.e. a selective association with apical microvilli and plasma membrane protrusions, respectively. Conversely, flow cytometry of murine CD34(+) bone marrow progenitors revealed the cell surface expression of prominin. Taken together, the data strongly suggest that the AC133 antigen is the human orthologue of prominin. | | 10681530
|
Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Röper, K, et al. Nat. Cell Biol., 2: 582-92 (2000)
2000
Mostrar Resumo
Membrane cholesterol-sphingolipid 'rafts', which are characterized by their insolubility in the non-ionic detergent Triton X-100 in the cold, have been implicated in the sorting of certain membrane proteins, such as placental alkaline phosphatase (PLAP), to the apical plasma membrane domain of epithelial cells. Here we show that prominin, an apically sorted pentaspan membrane protein, becomes associated in the trans-Golgi network with a lipid raft that is soluble in Triton X-100 but insoluble in another non-ionic detergent, Lubrol WX. At the cell surface, prominin remains insoluble in Lubrol WX and is selectively associated with microvilli, being largely segregated from the membrane subdomains containing PLAP. Cholesterol depletion results in the loss of prominin's microvillus-specific localization but does not lead to its complete intermixing with PLAP. We propose the coexistence within a membrane domain, such as the apical plasma membrane, of different cholesterol-based lipid rafts, which underlie the generation and maintenance of membrane subdomains. | Immunohistochemistry (Tissue) | 10980698
|
Selective localization of the polytopic membrane protein prominin in microvilli of epithelial cells - a combination of apical sorting and retention in plasma membrane protrusions. Corbeil, D, et al. J. Cell. Sci., 112 ( Pt 7): 1023-33 (1999)
1999
Mostrar Resumo
Prominin is a recently identified polytopic membrane protein expressed in various epithelial cells, where it is selectively associated with microvilli. When expressed in non-epithelial cells, prominin is enriched in plasma membrane protrusions. This raises the question of whether the selective association of prominin with microvilli in epithelial cells is solely due to its preference for, and stabilization in, plasma membrane protrusions, or is due to both sorting to the apical plasma membrane domain and subsequent enrichment in plasma membrane protrusions. To investigate this question, we have generated stably transfected MDCK cells expressing either full-length or C-terminally truncated forms of mouse prominin. Confocal immunofluorescence and domain-selective cell surface biotinylation experiments on transfected MDCK cells grown on permeable supports demonstrated the virtually exclusive apical localization of prominin at steady state. Pulse-chase experiments in combination with domain-selective cell surface biotinylation showed that newly synthesized prominin was directly targeted to the apical plasma membrane domain. Immunoelectron microscopy revealed that prominin was confined to microvilli rather than the planar region of the apical plasma membrane. Truncation of the cytoplasmic C-terminal tail of prominin impaired neither its apical cell surface expression nor its selective retention in microvilli. Both the apical-specific localization of prominin and its selective retention in microvilli were maintained when MDCK cells were cultured in low-calcium medium, i.e. in the absence of tight junctions. Taken together, our results show that: (i) prominin contains dual targeting information, for direct delivery to the apical plasma membrane domain and for the enrichment in the microvillar subdomain; and (ii) this dual targeting does not require the cytoplasmic C-terminal tail of prominin and still occurs in the absence of tight junctions. The latter observation suggests that entry into, and retention in, plasma membrane protrusions may play an important role in the establishment and maintenance of the apical-basal polarity of epithelial cells. | | 10198284
|
Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Weigmann, A, et al. Proc. Natl. Acad. Sci. U.S.A., 94: 12425-30 (1997)
1997
Mostrar Resumo
Using a new mAb raised against the mouse neuroepithelium, we have identified and cDNA-cloned prominin, an 858-amino acid-containing, 115-kDa glycoprotein. Prominin is a novel plasma membrane protein with an N-terminal extracellular domain, five transmembrane segments flanking two short cytoplasmic loops and two large glycosylated extracellular domains, and a cytoplasmic C-terminal domain. DNA sequences from Caenorhabditis elegans predict the existence of a protein with the same features, suggesting that prominin is conserved between vertebrates and invertebrates. Prominin is found not only in the neuroepithelium but also in various other epithelia of the mouse embryo. In the adult mouse, prominin has been detected in the brain ependymal layer, and in kidney tubules. In these epithelia, prominin is specific to the apical surface, where it is selectively associated with microvilli and microvilli-related structures. Remarkably, upon expression in CHO cells, prominin is preferentially localized to plasma membrane protrusions such as filopodia, lamellipodia, and microspikes. These observations imply that prominin contains information to be targeted to, and/or retained in, plasma membrane protrusions rather than the planar cell surface. Moreover, our results show that the mechanisms underlying targeting of membrane proteins to microvilli of epithelial cells and to plasma membrane protrusions of non-epithelial cells are highly related. | | 9356465
|