Interplay between glucose and leptin signalling determines the strength of GABAergic synapses at POMC neurons. Lee, DK; Jeong, JH; Chun, SK; Chua, S; Jo, YH Nature communications
6
6618
2015
Show Abstract
Regulation of GABAergic inhibitory inputs and alterations in POMC neuron activity by nutrients and adiposity signals regulate energy and glucose homeostasis. Thus, understanding how POMC neurons integrate these two signal molecules at the synaptic level is important. Here we show that leptin's action on GABA release to POMC neurons is influenced by glucose levels. Leptin stimulates the JAK2-PI3K pathway in both presynaptic GABAergic terminals and postsynaptic POMC neurons. Inhibition of AMPK activity in presynaptic terminals decreases GABA release at 10 mM glucose. However, postsynaptic TRPC channel opening by the PI3K-PLC signalling pathway in POMC neurons enhances spontaneous GABA release via activation of presynaptic MC3/4 and mGlu receptors at 2.5 mM glucose. High-fat feeding blunts AMPK-dependent presynaptic inhibition, whereas PLC-mediated GABAergic feedback inhibition remains responsive to leptin. Our data indicate that the interplay between glucose and leptin signalling in glutamatergic POMC neurons is critical for determining the strength of inhibitory tone towards POMC neurons. | 25808323
|
Monocarboxylate transporter 1 (MCT1) plays a direct role in short-chain fatty acids absorption in caprine rumen. Kirat, D; Masuoka, J; Hayashi, H; Iwano, H; Yokota, H; Taniyama, H; Kato, S The Journal of physiology
576
635-47
2006
Show Abstract
Despite the importance of short-chain fatty acids (SCFA) in maintaining the ruminant physiology, the mechanism of SCFA absorption is still not fully studied. The goal of this study was to elucidate the possible involvement of monocarboxylate transporter 1 (MCT1) in the mechanism of SCFA transport in the caprine rumen, and to delineate the precise cellular localization and the level of MCT1 protein along the entire caprine gastrointestinal tract. RT-PCR revealed the presence of mRNA encoding for MCT1 in all regions of the caprine gastrointestinal tract. Quantitative Western blot analysis showed that the level of MCT1 protein was in the order of rumen greater than /= reticulum greater than omasum greater than caecum greater than proximal colon greater than distal colon greater than abomasum greater than small intestine. Immunohistochemistry and immunofluorescence confocal analyses revealed widespread immunoreactive positivities for MCT1 in the caprine stomach and large intestine. Amongst the stratified squamous epithelial cells of the forestomach, MCT1 was predominantly expressed on the cell boundaries of the stratum basale and stratum spinosum. Double-immunofluorescence confocal laser-scanning microscopy confirmed the co-localization of MCT1 with its ancillary protein, CD147 in the caprine gastrointestinal tract. In vivo and in vitro functional studies, under the influence of the MCT1 inhibitors, p-chloromercuribenzoate (pCMB) and p-chloromercuribenzoic acid (pCMBA), demonstrated significant inhibitory effect on acetate and propionate transport in the rumen. This study provides evidence, for the first time in ruminants, that MCT1 has a direct role in the transepithelial transport and efflux of the SCFA across the stratum spinosum and stratum basale of the forestomach toward the blood side. | 16901943
|