Gbx2 directly restricts Otx2 expression to forebrain and midbrain, competing with class III POU factors. Inoue, F; Kurokawa, D; Takahashi, M; Aizawa, S Molecular and cellular biology
32
2618-27
2011
Afficher le résumé
Otx2 plays essential roles in rostral brain development, and its counteraction with Gbx2 has been suggested to determine the midbrain-hindbrain boundary (MHB) in vertebrates. We previously identified the FM enhancer that is conserved among vertebrates and drives Otx2 transcription in forebrain/midbrain from the early somite stage. In this study, we found that the POU homeodomain of class III POU factors (Brn1, Brn2, Brn4, and Oct6) associates with noncanonical target sequence TAATTA in the FM enhancer. MicroRNA-mediated knockdown of Brn2 and Oct6 diminished the FM enhancer activity in anterior neural progenitor cells (NPCs) differentiated from P19 cells. The class III POU factors associate with the FM enhancer in forebrain and midbrain but not in hindbrain. We also demonstrated that the Gbx2 homeodomain recognizes the same target TAATTA in the FM enhancer, and Gbx2 associates with the FM enhancer in hindbrain. Gbx2 misexpression in the anterior NPCs repressed the FM enhancer activity and inhibited Brn2 association with the enhancer, whereas Gbx2 knockdown caused ectopic Brn2 association in the posterior NPCs. These results suggest that class III POU factors and Gbx2 share the same target site, TAATTA, in the FM enhancer and that their region-specific binding restricts Otx2 expression at the MHB. | 22566684
|
β-Catenin/LEF1 transactivates the microRNA-371-373 cluster that modulates the Wnt/β-catenin-signaling pathway. A-D Zhou,L-T Diao,H Xu,Z-D Xiao,J-H Li,H Zhou,L-H Qu Oncogene
31
2011
Afficher le résumé
The microRNA-371-373 (miR-371-373) cluster is specifically expressed in human embryonic stem cells (ESCs) and is thought to be involved in stem cell maintenance. Recently, microRNAs (miRNAs) of this cluster were shown to be frequently upregulated in several human tumors. However, the regulatory mechanism for the involvement of the miR-371-373 cluster in human ESCs or cancer cells remains unclear. In this study, we explored the relationship between this miRNA cluster and the Wnt/β-catenin-signaling pathway, which has been shown to be involved in both stem cell maintenance and tumorigenesis. We show that miR-371-373 expression is induced by lithium chloride and is positively correlated with Wnt/β-catenin-signaling activity in several human cancer cell lines. Mechanistically, three TCF/LEF1-binding elements (TBEs) were identified in the promoter region and shown to be required for Wnt-dependent activation of miR-371-373. Interestingly, we also found that miR-372&373, in turn, activate Wnt/β-catenin signaling. In addition, four protein genes related to the Wnt/β-catenin-signaling pathway were identified as direct targets of miR-372&373, including Dickkopf-1 (DKK1), a well-known inhibitor of Wnt/β-catenin signaling. Using a lentiviral system, we showed that overexpression of miR-372 or miR-373 promotes cell growth and the invasive activity of tumor cells as knockdown of DKK1. Taken together, our study demonstrates a novel β-catenin/LEF1-miR-372&373-DKK1 regulatory feedback loop, which may have a critical role in regulating the activity of Wnt/β-catenin signaling in human cancer cells. | 22020335
|