BMCC1, which is an interacting partner of BCL2, attenuates AKT activity, accompanied by apoptosis. Tatsumi, Y; Takano, R; Islam, MS; Yokochi, T; Itami, M; Nakamura, Y; Nakagawara, A Cell death & disease
6
e1607
2015
Afficher le résumé
BNIP2 and Cdc42GAP homology (BCH) motif-containing molecule at the carboxyl-terminal region 1 (BMCC1) gene is highly expressed in patients with favorable neuroblastoma (NB). It encodes a 340-kDa protein with a conserved BCH scaffold domain that may regulate signaling networks and multiple cellular functions, including apoptosis. In this study, we determined the mechanism by which BMCC1 promotes apoptosis in human NB and non-NB cells, as BMCC1 is normally expressed in various organs, particularly in neuronal and epithelial tissues. We demonstrated in this report that BMCC1 was induced by DNA damage, one of the triggers of intrinsic apoptosis. Accordingly, we investigated whether BMCC1 expression impacts intracellular signals in the regulation of apoptosis via its C-terminal region containing BCH scaffold domain. BMCC1 decreased phosphorylation of survival signals on AKT and its upstream kinase PDK1. BMCC1 upregulation was correlated with the activation of forkhead box-O3a (FOXO3a) (a downstream inducer of apoptosis, which is suppressed by AKT) and induction of BCL2 inhibitor BIM, suggesting that BMCC1 negatively regulates phosphorylation pathway of AKT, resulted in apoptosis. In addition, we found that BNIP2 homology region of BMCC1 interacts with BCL2. Intrinsic apoptosis induced by DNA damage was enhanced by BMCC1 overexpression, and was diminished by knockdown of BMCC1. Taken together, we conclude that BMCC1 promotes apoptosis at multiple steps in AKT-mediated survival signal pathway. These steps include physical interaction with BCL2 and attenuation of AKT-dependent inhibition of FOXO3a functions, such as transcriptional induction of BIM and phosphorylation of ataxia telangiectasia-mutated (ATM) after DNA damage. We propose that downregulation of BMCC1 expression, which is frequently observed in unfavorable NB and epithelial-derived cancers, may facilitate tumor development by abrogating DNA damage repair and apoptosis. | | | 25611382
|
Analysis of the Relationships between DNA Double-Strand Breaks, Synaptonemal Complex and Crossovers Using the Atfas1-4 Mutant. Varas, J; Sánchez-Morán, E; Copenhaver, GP; Santos, JL; Pradillo, M PLoS genetics
11
e1005301
2015
Afficher le résumé
Chromatin Assembly Factor 1 (CAF-1) is a histone chaperone that assembles acetylated histones H3/H4 onto newly synthesized DNA, allowing the de novo assembly of nucleosomes during replication. CAF-1 is an evolutionary conserved heterotrimeric protein complex. In Arabidopsis, the three CAF-1 subunits are encoded by FAS1, FAS2 and MSI1. Atfas1-4 mutants have reduced fertility due to a decrease in the number of cells that enter meiosis. Interestingly, the number of DNA double-strand breaks (DSBs), measured by scoring the presence of γH2AX, AtRAD51 and AtDMC1 foci, is higher than in wild-type (WT) plants, and meiotic recombination genes such AtCOM1/SAE2, AtBRCA1, AtRAD51 and AtDMC1 are overexpressed. An increase in DSBs in this mutant does not have a significant effect in the mean chiasma frequency at metaphase I, nor a different number of AtMLH1 nor AtMUS81 foci per cell compared to WT at pachytene. Nevertheless, this mutant does show a higher gene conversion (GC) frequency. To examine how an increase in DSBs influences meiotic recombination and synaptonemal complex (SC) formation, we analyzed double mutants defective for AtFAS1 and different homologous recombination (HR) proteins. Most showed significant increases in both the mean number of synapsis initiation points (SIPs) and the total length of AtZYP1 stretches in comparison with the corresponding single mutants. These experiments also provide new insight into the relationships between the recombinases in Arabidopsis, suggesting a prominent role for AtDMC1 versus AtRAD51 in establishing interhomolog interactions. In Arabidopsis an increase in the number of DSBs does not translate to an increase in the number of crossovers (COs) but instead in a higher GC frequency. We discuss different mechanisms to explain these results including the possible existence of CO homeostasis in plants. | | | 26147458
|
Arabidopsis PCH2 Mediates Meiotic Chromosome Remodeling and Maturation of Crossovers. Lambing, C; Osman, K; Nuntasoontorn, K; West, A; Higgins, JD; Copenhaver, GP; Yang, J; Armstrong, SJ; Mechtler, K; Roitinger, E; Franklin, FC PLoS genetics
11
e1005372
2015
Afficher le résumé
Meiotic chromosomes are organized into linear looped chromatin arrays by a protein axis localized along the loop-bases. Programmed remodelling of the axis occurs during prophase I of meiosis. Structured illumination microscopy (SIM) has revealed dynamic changes in the chromosome axis in Arabidopsis thaliana and Brassica oleracea. We show that the axis associated protein ASY1 is depleted during zygotene concomitant with synaptonemal complex (SC) formation. Study of an Atpch2 mutant demonstrates this requires the conserved AAA+ ATPase, PCH2, which localizes to the sites of axis remodelling. Loss of PCH2 leads to a failure to deplete ASY1 from the axes and compromizes SC polymerisation. Immunolocalization of recombination proteins in Atpch2 indicates that recombination initiation and CO designation during early prophase I occur normally. Evidence suggests that CO interference is initially functional in the mutant but there is a defect in CO maturation following designation. This leads to a reduction in COs and a failure to form COs between some homologous chromosome pairs leading to univalent chromosomes at metaphase I. Genetic analysis reveals that CO distribution is also affected in some chromosome regions. Together these data indicate that the axis remodelling defect in Atpch2 disrupts normal patterned formation of COs. | | | 26182244
|
STAG3-mediated stabilization of REC8 cohesin complexes promotes chromosome synapsis during meiosis. Fukuda, T; Fukuda, N; Agostinho, A; Hernández-Hernández, A; Kouznetsova, A; Höög, C The EMBO journal
33
1243-55
2014
Afficher le résumé
Cohesion between sister chromatids in mitotic and meiotic cells is promoted by a ring-shaped protein structure, the cohesin complex. The cohesin core complex is composed of four subunits, including two structural maintenance of chromosome (SMC) proteins, one α-kleisin protein, and one SA protein. Meiotic cells express both mitotic and meiosis-specific cohesin core subunits, generating cohesin complexes with different subunit composition and possibly separate meiotic functions. Here, we have analyzed the in vivo function of STAG3, a vertebrate meiosis-specific SA protein. Mice with a hypomorphic allele of Stag3, which display a severely reduced level of STAG3, are viable but infertile. We show that meiocytes in homozygous mutant Stag3 mice display chromosome axis compaction, aberrant synapsis, impaired recombination and developmental arrest. We find that the three different α-kleisins present in meiotic cells show different dosage-dependent requirements for STAG3 and that STAG3-REC8 cohesin complexes have a critical role in supporting meiotic chromosome structure and functions. | | | 24797475
|
Long-term quiescent fibroblast cells transit into senescence. Marthandan, S; Priebe, S; Hemmerich, P; Klement, K; Diekmann, S PloS one
9
e115597
2014
Afficher le résumé
Cellular senescence is described to be a consequence of telomere erosion during the replicative life span of primary human cells. Quiescence should therefore not contribute to cellular aging but rather extend lifespan. Here we tested this hypothesis and demonstrate that cultured long-term quiescent human fibroblasts transit into senescence due to similar cellular mechanisms with similar dynamics and with a similar maximum life span as proliferating controls, even under physiological oxygen conditions. Both, long-term quiescent and senescent fibroblasts almost completely fail to undergo apoptosis. The transition of long-term quiescent fibroblasts into senescence is also independent of HES1 which protects short-term quiescent cells from becoming senescent. Most significantly, DNA damage accumulates during senescence as well as during long-term quiescence at physiological oxygen levels. We suggest that telomere-independent, potentially maintenance driven gradual induction of cellular senescence during quiescence is a counterbalance to tumor development. | Western Blotting | | 25531649
|
BRCA1 pathway function in basal-like breast cancer cells. Hill, SJ; Clark, AP; Silver, DP; Livingston, DM Molecular and cellular biology
34
3828-42
2014
Afficher le résumé
Sporadic basal-like cancers (BLCs) are a common subtype of breast cancer that share multiple biological properties with BRCA1-mutated breast tumors. Despite being BRCA1(+/+), sporadic BLCs are widely viewed as phenocopies of BRCA1-mutated breast cancers, because they are hypothesized to manifest a BRCA1 functional defect or breakdown of a pathway(s) in which BRCA1 plays a major role. The role of BRCA1 in the repair of double-strand DNA breaks by homologous recombination (HR) is its best understood function and the function most often implicated in BRCA1 breast cancer suppression. Therefore, it is suspected that sporadic BLCs exhibit a defect in HR. To test this hypothesis, multiple DNA damage repair assays focused on several types of repair were performed on a group of cell lines classified as sporadic BLCs and on controls. The sporadic BLC cell lines failed to exhibit an overt HR defect. Rather, they exhibited defects in the repair of stalled replication forks, another BRCA1 function. These results provide insight into why clinical trials of poly(ADP-ribose) polymerase (PARP) inhibitors, which require an HR defect for efficacy, have been unsuccessful in sporadic BLCs, unlike cisplatin, which elicits DNA damage that requires stalled fork repair and has shown efficacy in sporadic BLCs. | | | 25092866
|
Double-strand break repair deficiency in NONO knockout murine embryonic fibroblasts and compensation by spontaneous upregulation of the PSPC1 paralog. Li, S; Li, Z; Shu, FJ; Xiong, H; Phillips, AC; Dynan, WS Nucleic acids research
42
9771-80
2014
Afficher le résumé
NONO, SFPQ and PSPC1 make up a family of proteins with diverse roles in transcription, RNA processing and DNA double-strand break (DSB) repair. To understand long-term effects of loss of NONO, we characterized murine embryonic fibroblasts (MEFs) from knockout mice. In the absence of genotoxic stress, wild-type and mutant MEFs showed similar growth rates and cell cycle distributions, and the mutants were only mildly radiosensitive. Further investigation showed that NONO deficiency led to upregulation of PSPC1, which replaced NONO in a stable complex with SFPQ. Knockdown of PSPC1 in a NONO-deficient background led to severe radiosensitivity and delayed resolution of DSB repair foci. The DNA-dependent protein kinase (DNA-PK) inhibitor, NU7741, sensitized wild-type and singly deficient MEFs, but had no additional effect on doubly deficient cells, suggesting that NONO/PSPC1 and DNA-PK function in the same pathway. We tested whether NONO and PSPC1 might also affect repair indirectly by influencing mRNA levels for other DSB repair genes. Of 12 genes tested, none were downregulated, and several were upregulated. Thus, NONO or related proteins are critical for DSB repair, NONO and PSPC1 are functional homologs with partially interchangeable functions and a compensatory response involving PSPC1 blunts the effect of NONO deficiency. | Immunofluorescence | | 25100870
|
PCNA promotes processive DNA end resection by Exo1. Chen, X; Paudyal, SC; Chin, RI; You, Z Nucleic acids research
41
9325-38
2013
Afficher le résumé
Exo1-mediated resection of DNA double-strand break ends generates 3' single-stranded DNA overhangs required for homology-based DNA repair and activation of the ATR-dependent checkpoint. Despite its critical importance in inducing the overall DNA damage response, the mechanisms and regulation of the Exo1 resection pathway remain incompletely understood. Here, we identify the ring-shaped DNA clamp PCNA as a new factor in the Exo1 resection pathway. Using mammalian cells, Xenopus nuclear extracts and purified proteins, we show that after DNA damage, PCNA loads onto double-strand breaks and promotes Exo1 damage association through direct interaction with Exo1. By tethering Exo1 to the DNA substrate, PCNA confers processivity to Exo1 in resection. This role of PCNA in DNA resection is analogous to its function in DNA replication where PCNA serves as a processivity co-factor for DNA polymerases. | | | 23939618
|
The histone methyltransferase MMSET regulates class switch recombination. Pei, H; Wu, X; Liu, T; Yu, K; Jelinek, DF; Lou, Z Journal of immunology (Baltimore, Md. : 1950)
190
756-63
2013
Afficher le résumé
Wolf-Hirschhorn syndrome (WHS) is a genetic disease with characteristic facial features and developmental disorders. Of interest, loss of the MMSET gene (also known as WHSC1) is considered to be responsible for the core phenotypes of this disease. Patients with WHS also display Ab deficiency, although the underlying cause of this deficiency is unclear. Recent studies suggest that the histone methyltransferase activity of MMSET plays an important role in the DNA damage response by facilitating the recruitment of 53BP1 to sites of DNA damage. We hypothesize that MMSET also regulates class switch recombination (CSR) through its effect on 53BP1. In this study, we show that MMSET indeed plays an important role in CSR through its histone methyltransferase activity. Knocking down MMSET expression impaired 53BP1 recruitment as well as the germline transcription of the Igh switch regions, resulting in defective CSR but no effect on cell growth and viability. These results suggest that defective CSR caused by MMSET deficiency could be a cause of Ab deficiency in WHS patients. | | | 23241889
|
Salinomycin induces apoptosis and senescence in breast cancer: upregulation of p21, downregulation of survivin and histone H3 and H4 hyperacetylation. Al Dhaheri, Y; Attoub, S; Arafat, K; Abuqamar, S; Eid, A; Al Faresi, N; Iratni, R Biochimica et biophysica acta
3121-35
2013
Afficher le résumé
In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions.Cell viability was measured by Cell Titer-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3/7 activation, PARP cleavage and Annexin V staining. Cell cycle distribution was assessed by propidium iodide flow cytometry. Senescence was confirmed by measuring the senescence-associated β-galactosidase activity. Changes in protein expression and histone hyperacetylation was determined by western blot and confirmed by immunofluorescence assay.Salinomycin was able to inhibit the growth of the three cell lines in time- and concentration-dependent manners. We showed that depending on the concentrations used, Salinomycin elicits different effects on the MDA-MB-231 cells. High concentrations of Salinomycin induced a G2 arrest, downregulation of survivin and triggered apoptosis. Interestingly, treatment with low concentrations of Salinomycin induced a transient G1 arrest at earlier time point and G2 arrest at later point and senescence associated with enlarged cellmorphology, upregulation of p21 protein, increase in histone H3 and H4 hyperacetylation and expression of SA-β-Gal activity. Furthermore, we found that Salinomycin was able to potentiate the killing of the MCF-7 and MDA-MB-231 cells, by the chemotherapeutic agents, 4-Hydroxytamoxifen and frondo side A, respectively.Our data are the first to link senescence and histone modifications to Salinomycin.This study provides a new insight to better understand the mechanism of action of Salinomycin, at least in breast cancer cells. | Immunofluorescence | | 23352703
|