Huntington disease iPSCs show early molecular changes in intracellular signaling, the expression of oxidative stress proteins and the p53 pathway. Szlachcic, WJ; Switonski, PM; Krzyzosiak, WJ; Figlerowicz, M; Figiel, M Disease models & mechanisms
8
1047-57
2015
Afficher le résumé
Huntington disease (HD) is a brain disorder characterized by the late onset of motor and cognitive symptoms, even though the neurons in the brain begin to suffer dysfunction and degeneration long before symptoms appear. There is currently no cure. Several molecular and developmental effects of HD have been identified using neural stem cells (NSCs) and differentiated cells, such as neurons and astrocytes. Still, little is known regarding the molecular pathogenesis of HD in pluripotent cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Therefore, we examined putative signaling pathways and processes involved in HD pathogenesis in pluripotent cells. We tested naïve mouse HD YAC128 iPSCs and two types of human HD iPSC that were generated from HD and juvenile-HD patients. Surprisingly, we found that a number of changes affecting cellular processes in HD were also present in undifferentiated pluripotent HD iPSCs, including the dysregulation of the MAPK and Wnt signaling pathways and the dysregulation of the expression of genes related to oxidative stress, such as Sod1. Interestingly, a common protein interactor of the huntingtin protein and the proteins in the above pathways is p53, and the expression of p53 was dysregulated in HD YAC128 iPSCs and human HD iPSCs. In summary, our findings demonstrate that multiple molecular pathways that are characteristically dysregulated in HD are already altered in undifferentiated pluripotent cells and that the pathogenesis of HD might begin during the early stages of life. | Western Blotting | | 26092128
|
Notch pathway regulates female germ cell meiosis progression and early oogenesis events in fetal mouse. Feng, YM; Liang, GJ; Pan, B; Qin, XS; Zhang, XF; Chen, CL; Li, L; Cheng, SF; De Felici, M; Shen, W Cell cycle (Georgetown, Tex.)
13
782-91
2014
Afficher le résumé
A critical process of early oogenesis is the entry of mitotic oogonia into meiosis, a cell cycle switch regulated by a complex gene regulatory network. Although Notch pathway is involved in numerous important aspects of oogenesis in invertebrate species, whether it plays roles in early oogenesis events in mammals is unknown. Therefore, the rationale of the present study was to investigate the roles of Notch signaling in crucial processes of early oogenesis, such as meiosis entry and early oocyte growth. Notch receptors and ligands were localized in mouse embryonic female gonads and 2 Notch inhibitors, namely DAPT and L-685,458, were used to attenuate its signaling in an in vitro culture system of ovarian tissues from 12.5 days post coitum (dpc) fetus. The results demonstrated that the expression of Stra8, a master gene for germ cell meiosis, and its stimulation by retinoic acid (RA) were reduced after suppression of Notch signaling, and the other meiotic genes, Dazl, Dmc1, and Rec8, were abolished or markedly decreased. Furthermore, RNAi of Notch1 also markedly inhibited the expression of Stra8 and SCP3 in cultured female germ cells. The increased methylation status of CpG islands within the Stra8 promoter of the oocytes was observed in the presence of DAPT, indicating that Notch signaling is probably necessary for maintaining the epigenetic state of this gene in a way suitable for RA stimulation. Furthermore, in the presence of Notch inhibitors, progression of oocytes through meiosis I was markedly delayed. At later culture periods, the rate of oocyte growth was decreased, which impaired subsequent primordial follicle assembly in cultured ovarian tissues. Taken together, these results suggested new roles of the Notch signaling pathway in female germ cell meiosis progression and early oogenesis events in mammals. | | | 24398584
|
Bovine induced pluripotent stem cells are more resistant to apoptosis than testicular cells in response to mono-(2-ethylhexyl) phthalate. Lin, YC; Kuo, KK; Wuputra, K; Lin, SH; Ku, CC; Yang, YH; Wang, SW; Wang, SW; Wu, DC; Wu, CC; Chai, CY; Lin, CL; Lin, CS; Kajitani, M; Miyoshi, H; Nakamura, Y; Hashimoto, S; Matsushima, K; Jin, C; Huang, SK; Saito, S; Yokoyama, KK International journal of molecular sciences
15
5011-31
2014
Afficher le résumé
Although the androgen receptor (AR) has been implicated in the promotion of apoptosis in testicular cells (TSCs), the molecular pathway underlying AR-mediated apoptosis and its sensitivity to environmental hormones in TSCs and induced pluripotent stem cells (iPSCs) remain unclear. We generated the iPSCs from bovine TSCs via the electroporation of OCT4. The established iPSCs were supplemented with leukemia inhibitory factor and bone morphogenetic protein 4 to maintain and stabilize the expression of stemness genes and their pluripotency. Apoptosis signaling was assessed after exposure to mono-(2-ethylhexyl) phthalate (MEHP), the active metabolite of di-(2-ethylhexyl) phthalate. Here, we report that iPSCs were more resistant to MEHP-induced apoptosis than were original TSCs. MEHP also repressed the expression of AR and inactivated WNT signaling, and then led to the commitment of cells to apoptosis via the cyclin dependent kinase inhibitor p21CIP1. The loss of the frizzed receptor 7 and the gain of p21CIP were responsible for the stimulatory effect of MEHP on AR-mediated apoptosis. Our results suggest that testicular iPSCs can be used to study the signaling pathways involved in the response to environmental disruptors, and to assess the toxicity of environmental endocrine disruptors in terms of the maintenance of stemness and pluripotency. | Western Blotting | | 24658443
|
Improved derivation efficiency and pluripotency of stem cells from the refractory inbred C57BL/6 mouse strain by small molecules. Lin, CJ; Amano, T; Tang, Y; Tian, X PloS one
9
e106916
2014
Afficher le résumé
The ability of small molecules to maintain self-renewal and to inhibit differentiation of pluripotent stem cells has been well-demonstrated. Two widely used molecules are PD 98059 (PD), an inhibitor of extracellular-signal-regulated kinase 1 (ERK), and SC1 (Pluripotin), which inhibits the RasGAP and ERK pathways. However, no studies have been conducted to compare their effects on the pluripotency and derivation of embryonic stem (ES) cells from inbred mice C57BL/6, an important mouse strain frequently used to model behavior, cognitive functions, immune system, and metabolic disorders in humans and also the first mouse strain chosen to be sequenced for its entire genome. We found significantly increased derivation efficiency of ES cells from in vivo fertilized embryos (fES) of C57BL/6 with the use of PD (71.4% over the control of 35.3%). Because fES and ES from cloned embryos (ntES) are not distinguishable in transcription or translation profiles, we used ntES cells to compare the effect of small molecules on their in vitro characteristics, in vitro differentiation ability, and the ability to generate full-term ntES-4N pups by tetraploid complementation. NtES cells exhibited typical ES characteristics and up-regulated Sox2 expression in media with either small-molecule. Higher rates of full term ntES-4N pup were generated by the supplementation of PD or SC1. We obtained the highest efficiency of ntES-4N pup generation ever reported from this strain by supplementing ES medium with SC1. Lastly, we compared the pluripotency of fES, ntES and induced pluripotent stem (iPS) cells of C57BL/6 background using the tetraploid complementation assay. A significant increase in implantation sites and the number of full-term pups were obtained when fES, ntES, and iPS cells were cultured with SC1 compared to the control ES medium. In conclusion, supplementing ES cell culture medium with PD and SC1 increases the derivation efficiency and pluripotency, respectively, of stem cells derived from the refractory inbred C57BL/6 strain. | | | 25211343
|
KSR-based medium improves the generation of high-quality mouse iPS cells. Liu, K; Wang, F; Ye, X; Wang, L; Yang, J; Zhang, J; Liu, L PloS one
9
e105309
2014
Afficher le résumé
Induced pluripotent stem (iPS) cells from somatic cells have great potential for regenerative medicine. The efficiency in generation of iPS cells has been significantly improved in recent years. However, the generation of high-quality iPS cells remains of high interest. Consistently, we demonstrate that knockout serum replacement (KSR)-based medium accelerates iPS cell induction and improves the quality of iPS cells, as confirmed by generation of chimeras and all iPS cell-derived offspring with germline transmission competency. Both alkaline phosphatase (AP) activity assay and expression of Nanog have been used to evaluate the efficiency of iPS cell induction and formation of ES/iPS cell colonies; however, appropriate expression of Nanog frequently indicates the quality of ES/iPS cells. Interestingly, whereas foetal bovine serum (FBS)-based media increase iPS cell colony formation, as revealed by AP activity, KSR-based media increase the frequency of iPS cell colony formation with Nanog expression. Furthermore, inhibition of MAPK/ERK by a specific inhibitor, PD0325901, in KSR- but not in FBS-based media significantly increases Nanog-GFP+ iPS cells. In contrast, addition of bFGF in KSR-based media decreases proportion of Nanog-GFP+ iPS cells. Remarkably, PD can rescue Nanog-GFP+ deficiency caused by bFGF. These data suggest that MAPK/ERK pathway influences high quality mouse iPS cells and that KSR- and PD-based media could enrich homogeneous authentic pluripotent stem cells. | Immunofluorescence | | 25171101
|
Androgen receptor-mediated apoptosis in bovine testicular induced pluripotent stem cells in response to phthalate esters. Wang, SW; Wang, SS; Wu, DC; Lin, YC; Ku, CC; Wu, CC; Chai, CY; Lee, JN; Tsai, EM; Lin, CL; Yang, RC; Ko, YC; Yu, HS; Huo, C; Chuu, CP; Murayama, Y; Nakamura, Y; Hashimoto, S; Matsushima, K; Jin, C; Eckner, R; Lin, CS; Saito, S; Yokoyama, KK Cell death & disease
4
e907
2013
Afficher le résumé
The androgen receptor (AR) has a critical role in promoting androgen-dependent and -independent apoptosis in testicular cells. However, the molecular mechanisms that underlie the ligand-independent apoptosis, including the activity of AR in testicular stem cells, are not completely understood. In the present study, we generated induced pluripotent stem cells (iPSCs) from bovine testicular cells by electroporation of octamer-binding transcription factor 4 (OCT4). The cells were supplemented with leukemia inhibitory factor and bone morphogenetic protein 4, which maintained and stabilized the expression of stemness genes and pluripotency. The iPSCs were used to assess the apoptosis activity following exposure to phthalate esters, including di (2-ethyhexyl) phthalates, di (n-butyl) phthalate, and butyl benzyl phthalate. Phthalate esters significantly reduced the expression of AR in iPSCs and induced a higher ratio of BAX/BCL-2, thereby favoring apoptosis. Phthalate esters also increased the expression of cyclin-dependent kinase inhibitor 1 (p21(Cip1)) in a p53-dependent manner and enhanced the transcriptional activity of p53. The forced expression of AR and knockdown of p21(Cip1) led to the rescue of the phthalate-mediated apoptosis. Overall, this study suggests that testicular iPSCs are a useful system for screening the toxicity of environmental disruptors and examining their effect on the maintenance of stemness and pluripotency, as well as for identifying the iPSC signaling pathway(s) that are deregulated by these chemicals. | | | 24201806
|
A novel feeder-free culture system for human pluripotent stem cell culture and induced pluripotent stem cell derivation. Vuoristo, S; Toivonen, S; Weltner, J; Mikkola, M; Ustinov, J; Trokovic, R; Palgi, J; Lund, R; Tuuri, T; Otonkoski, T PloS one
8
e76205
2013
Afficher le résumé
Correct interactions with extracellular matrix are essential to human pluripotent stem cells (hPSC) to maintain their pluripotent self-renewal capacity during in vitro culture. hPSCs secrete laminin 511/521, one of the most important functional basement membrane components, and they can be maintained on human laminin 511 and 521 in defined culture conditions. However, large-scale production of purified or recombinant laminin 511 and 521 is difficult and expensive. Here we have tested whether a commonly available human choriocarcinoma cell line, JAR, which produces high quantities of laminins, supports the growth of undifferentiated hPSCs. We were able to maintain several human pluripotent stem cell lines on decellularized matrix produced by JAR cells using a defined culture medium. The JAR matrix also supported targeted differentiation of the cells into neuronal and hepatic directions. Importantly, we were able to derive new human induced pluripotent stem cell (hiPSC) lines on JAR matrix and show that adhesion of the early hiPSC colonies to JAR matrix is more efficient than to matrigel. In summary, JAR matrix provides a cost-effective and easy-to-prepare alternative for human pluripotent stem cell culture and differentiation. In addition, this matrix is ideal for the efficient generation of new hiPSC lines. | | | 24098444
|
Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming. Yamaguchi, S; Hong, K; Liu, R; Inoue, A; Shen, L; Zhang, K; Zhang, Y Cell research
23
329-39
2013
Afficher le résumé
Previous studies have revealed that mouse primordial germ cells (PGCs) undergo genome-wide DNA methylation reprogramming to reset the epigenome for totipotency. However, the precise 5-methylcytosine (5mC) dynamics and its relationship with the generation of 5-hydroxymethylcytosine (5hmC) are not clear. Here we analyzed the dynamics of 5mC and 5hmC during PGC reprograming and germ cell development. Unexpectedly, we found a specific period (E8.5-9.5) during which both 5mC and 5hmC levels are low. Subsequently, 5hmC levels increase reaching its peak at E11.5 and gradually decrease until E13.5 likely by replication-dependent dilution. Interestingly, 5hmC is enriched in chromocenters during this period. While this germ cell-specific 5hmC subnuclear localization pattern is maintained in female germ cells even in mature oocytes, such pattern is gradually lost in male germ cells as mitotic proliferation resumes during the neonatal stage. Pericentric 5hmC plays an important role in silencing major satellite repeat, especially in female PGCs. Global transcriptome analysis by RNA-seq revealed that the great majority of differentially expressed genes from E9.5 to 13.5 are upregulated in both male and female PGCs. Although only female PGCs enter meiosis during the prenatal stage, meiosis-related and a subset of imprinted genes are significantly upregulated in both male and female PGCs at E13.5. Thus, our study not only reveals the dynamics of 5mC and 5hmC during PGC reprogramming and germ cell development, but also their potential role in epigenetic reprogramming and transcriptional regulation of meiotic and imprinted genes. | | | 23399596
|
Induced pluripotency and oncogenic transformation are related processes. Riggs, JW; Barrilleaux, BL; Varlakhanova, N; Bush, KM; Chan, V; Knoepfler, PS Stem cells and development
22
37-50
2013
Afficher le résumé
Induced pluripotent stem cells (iPSCs) have the potential for creating patient-specific regenerative medicine therapies, but the links between pluripotency and tumorigenicity raise important safety concerns. More specifically, the methods employed for the production of iPSCs and oncogenic foci (OF), a form of in vitro produced tumor cells, are surprisingly similar, raising potential concerns about iPSCs. To test the hypotheses that iPSCs and OF are related cell types and, more broadly, that the induction of pluripotency and tumorigenicity are related processes, we produced iPSCs and OF in parallel from common parental fibroblasts. When we compared the transcriptomes of these iPSCs and OF to their parental fibroblasts, similar transcriptional changes were observed in both iPSCs and OF. A significant number of genes repressed during the iPSC formation were also repressed in OF, including a large cohort of differentiation-associated genes. iPSCs and OF shared a limited number of genes that were upregulated relative to parental fibroblasts, but gene ontology analysis pointed toward monosaccharide metabolism as upregulated in both iPSCs and OF. iPSCs and OF were distinct in that only iPSCs activated a host of pluripotency-related genes, while OF activated cellular damage and specific metabolic pathways. We reprogrammed oncogenic foci (ROF) to produce iPSC-like cells, a process dependent on Nanog. However, the ROF had reduced differentiation potential compared to iPSC, suggesting that oncogenic transformation leads to cellular changes that impair complete reprogramming. Taken together, these findings support a model in which OF and iPSCs are related, yet distinct cell types, and in which induced pluripotency and induced tumorigenesis are similar processes. | | | 22998387
|
Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues. Christoforou, N; Liau, B; Chakraborty, S; Chellapan, M; Bursac, N; Leong, KW PloS one
8
e65963
2013
Afficher le résumé
The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS) cells, which once differentiated allow for the enrichment of Nkx2-5(+) cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+) cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors' ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological screening and drug development studies. | | | 23785459
|