Expression of brain-derived neurotrophic factor and TrkB receptor in the sudden infant death syndrome brainstem. Samantha Tang,Rita Machaalani,Karen A Waters Respiratory physiology & neurobiology
180
2012
Show Abstract
This study compared the expression of BDNF (proBDNF and rhBDNF forms) and its receptor TrkB, in the medulla of sudden infant death syndrome (SIDS) infants and infants who died from known causes (non-SIDS). This study also evaluated these markers in association with SIDS clinical risk factors including, sleep position, cigarette smoke exposure and gender. Brainstem tissue was immunohistochemically stained and quantitative analyses were made for eight nuclei of the caudal and rostral medulla. Compared to non-SIDS, SIDS infants had lower rhBDNF in the caudal nucleus of the solitary tract and higher TrkB in the caudal dorsal motor nucleus of the vagus. Within the SIDS cohort, prone sleep position was associated with lower rhBDNF in the caudal arcuate nucleus, and cigarette smoke exposure was associated with lower rhBDNF and TrkB in the inferior olivary nucleus. Abnormal expression of BDNF and TrkB suggests that neuroprotective functions of the BDNF/TrkB system may be reduced in respiratory-related nuclei of SIDS infants. | | 22020324
|
Neural differentiation of human adipose tissue-derived stem cells. Yu JM, Bunnell BA, Kang SK. Methods in molecular biology (Clifton, N.J.)
702
219-31
2011
Show Abstract
While adult stem cells can be induced to transdifferentiate into multiple lineages of cells or tissues, their plasticity and utility for human therapy remains controversial. In this chapter, we describe methods for the transdifferentiation of human adipose tissue-derived stem cells (ASCs) along neural lineages using in vitro and in vivo systems. The in vitro neural differentiation of ASCs has been reported by several groups using serum-free cytokine induction, butylated hydroxyanisole (BHA) chemical induction, and neurosphere formation in combination with the cytokines, such as brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF). For in vivo neurogenic induction, ASCs are treated with BDNF and bFGF to form neurospheres in vitro and then delivered directly to the brain. In this chapter, several detailed protocols for the effective neurogenic induction of ASCs in vitro and in vivo are described. The protocols described herein can be applied to further molecular and mechanistic studies of neurogenic induction and differentiation of ASCs. In addition, these methods can be useful for differentiating ASCs for therapeutic intervention in central nervous system disorders. | | 21082405
|
Immunolocalization of pro- and mature-brain derived neurotrophic factor (BDNF) and receptor TrkB in the human brainstem and hippocampus. Tang S, Machaalani R, Waters KA Brain Res
1354
1-14. Epub 2010 Jul 29.
2010
Show Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor TrkB are essential in promoting normal development of the central nervous system. Specific functions that are affected in knockout models include respiratory control, coordination of movement and balance, and feeding activities. The expression of these markers has not yet been studied in the human infant brain. This study provides a detailed account of the distribution and localization of both pro- and mature-recombinant human (rh) forms of BDNF, and of TrkB in the human infant brainstem and hippocampus, and qualitatively compares this expression to that seen in the human adult. Using commercially available antibodies, we applied immunohistochemistry on formalin fixed and paraffin embedded human brain tissue [n=8 for infant, n=6 for adult], and qualitatively analyzed the expression of proBDNF, rhBDNF and TrkB. Amongst the brainstem regions studied, the greatest expression of the markers was in the mesencephalic trigeminal of the pons, and in the medulla, the inferior olive and arcuate nucleus. The lowest expression was in the substantia nigra of the midbrain and pontine locus coeruleus. Compared to adults, all the studied markers had a higher expression in the infant brainstem nuclei of the hypoglossal, vestibular, dorsal motor nucleus of the vagus, prepositus, cuneate, and dorsal raphe. In the hippocampus, only TrkB showed a higher expression in infants compared to adults. We conclude that BDNF and TrkB play important roles in controlling respiration, movement, balance and feeding in the brainstem and that the TrkB receptor is the most age-sensitive component of this system, especially in the hippocampus. | | 20673758
|
Intrathecal NGF administration reduces reactive astrocytosis and changes neurotrophin receptors expression pattern in a rat model of neuropathic pain. Cirillo, Giovanni, et al. Cell. Mol. Neurobiol., 30: 51-62 (2010)
2010
Show Abstract
Nerve growth factor (NGF), an essential peptide for sensory neurons, seems to have opposite effects when administered peripherally or directly to the central nervous system. We investigated the effects of 7-days intrathecal (i.t.) infusion of NGF on neuronal and glial spinal markers relevant to neuropathic behavior induced by chronic constriction injury (CCI) of the sciatic nerve. Allodynic and hyperalgesic behaviors were investigated by Von Frey and thermal Plantar tests, respectively. NGF-treated animals showed reduced allodynia and thermal hyperalgesia, compared to control animals. We evaluated on lumbar spinal cord the expression of microglial (ED-1), astrocytic (GFAP and S-100beta), and C- and Adelta-fibers (SubP, IB-4 and Cb) markers. I.t. NGF treatment reduced reactive astrocytosis and the density of SubP, IB4 and Cb positive fibers in the dorsal horn of injured animals. Morphometric parameters of proximal sciatic nerve stump fibers and cells in DRG were also analyzed in CCI rats: myelin thickness was reduced and DRG neurons and satellite cells appeared hypertrophic. I.t. NGF treatment showed a beneficial effect in reversing these molecular and morphological alterations. Finally, we analyzed by immunohistochemistry the expression pattern of neurotrophin receptors TrkA, pTrkA, TrkB and p75(NTR). Substantial alterations in neurotrophin receptors expression were observed in the spinal cord of CCI and NGF-treated animals. Our results indicate that i.t. NGF administration reverses the neuro-glial morphomolecular changes occurring in neuropathic animals paralleled by alterations in neurotrophin receptors ratio, and suggest that NGF is effective in restoring homeostatic conditions in the spinal cord and maintaining analgesia in neuropathic pain. | | 19585233
|
Dehydroepiandrosterone and neurotrophins favor axonal growth in a sensory neuron-keratinocyte coculture model. L Ullmann, J-L Rodeau, L Danoux, J-L Contet-Audonneau, G Pauly, R Schlichter, L Ullmann, J-L Rodeau, L Danoux, J-L Contet-Audonneau, G Pauly, R Schlichter, L Ulmann, J-L Rodeau, L Danoux, J-L Contet-Audonneau, G Pauly, R Schlichter Neuroscience
159
514-25
2009
Show Abstract
We have previously shown that axonal growth from a subset of sensory neurons was promoted by keratinocytes when the two cell types were co-cultured in a low calcium medium. This phenomenon involves the production of one or several diffusible factors. Here we show that the neuritogenic effect of keratinocytes was significantly reduced in the case of rat primary sensory dorsal root ganglion (DRG) neurons, or completely suppressed in the case of the sensory neuron cell line ND7-23, when the activity of neurotrophin receptors (Trk receptors) was blocked with K252a. This trophic effect apparently involved the activation of tyrosine kinase receptors A and B (TrkA and TrkB) expressed by subpopulations of small- to medium-sized DRG neurons, or only of TrkA receptors in the case of ND7-23 neurons. A residual neurite growth promoting effect of keratinocytes persisted in a fraction of DRG neurons after Trk receptor blockade. This effect was mimicked by the steroid dehydroepiandrosterone (DHEA) but not by other steroids such as pregnenolone, progesterone or 17beta-estradiol. The use of pharmacological agents which inhibit different steps of steroidogenesis indicated that DHEA was probably synthesized from cholesterol in keratinocytes. Our results strongly suggest that DHEA might act as a neurotrophic signal derived from keratinocytes to promote axonal outgrowth from a subpopulation of sensory neurons. | | 19361476
|
Brain-derived neurotrophic factor signaling does not stimulate subventricular zone neurogenesis in adult mice and rats. Galvão, RP; Garcia-Verdugo, JM; Alvarez-Buylla, A The Journal of neuroscience : the official journal of the Society for Neuroscience
28
13368-83
2008
Show Abstract
In rodents, the adult subventricular zone (SVZ) generates neuroblasts which migrate to the olfactory bulb (OB) and differentiate into interneurons. Recent work suggests that the neurotrophin Brain-Derived Neurotrophic Factor (BDNF) can enhance adult SVZ neurogenesis, but the mechanism by which it acts is unknown. Here, we analyzed the role of BDNF and its receptor TrkB in adult SVZ neurogenesis. We found that TrkB is the most prominent neurotrophin receptor in the mouse SVZ, but only the truncated, kinase-negative isoform (TrkB-TR) was detected. TrkB-TR is expressed in SVZ astrocytes and ependymal cells, but not in neuroblasts. TrkB mutants have reduced SVZ proliferation and survival and fewer new OB neurons. To test whether this effect is cell-autonomous, we grafted SVZ cells from TrkB knock-out mice (TrkB-KO) into the SVZ of wild-type mice (WT). Grafted progenitors generated neuroblasts that migrated to the OB in the absence of TrkB. The survival and differentiation of granular interneurons and Calbindin(+) periglomerular interneurons seemed unaffected by the loss of TrkB, whereas dopaminergic periglomerular neurons were reduced. Intra-ventricular infusion of BDNF yielded different results depending on the animal species, having no effect on neuron production from mouse SVZ, while decreasing it in rats. Interestingly, mice and rats also differ in their expression of the neurotrophin receptor p75. Our results indicate that TrkB is not essential for adult SVZ neurogenesis and do not support the current view that delivering BDNF to the SVZ can enhance adult neurogenesis. | Immunohistochemistry | 19074010
|
Requirement of TrkB for synapse elimination in developing cerebellar Purkinje cells. Bosman, LW; Hartmann, J; Barski, JJ; Lepier, A; Noll-Hussong, M; Reichardt, LF; Konnerth, A Brain cell biology
35
87-101
2006
Show Abstract
The receptor tyrosine kinase TrkB and its ligands, brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5), are critically important for growth, survival and activity-dependent synaptic strengthening in the central nervous system. These TrkB-mediated actions occur in a highly cell-type specific manner. Here we report that cerebellar Purkinje cells, which are richly endowed with TrkB receptors, develop a normal morphology in trkB-deficient mice. Thus, in contrast to other types of neurons, Purkinje cells do not need TrkB for dendritic growth and spine formation. Instead, we find a moderate delay in the maturation of GABAergic synapses and, more importantly, an abnormal multiple climbing fiber innervation in Purkinje cells in trkB-deficient mice. Thus, our results demonstrate an involvement of TrkB receptors in synapse elimination and reveal a new role for receptor tyrosine kinases in the brain. | | 17940915
|
NMDA receptor activation modulates programmed cell death during early post-natal retinal development: a BDNF-dependent mechanism. Rodrigo A P Martins,Mariana S Silveira,Marco R Curado,Angela I Police,Rafael Linden Journal of neurochemistry
95
2005
Show Abstract
Glutamate is a classical excitotoxin of the central nervous system (CNS), but extensive work demonstrates neuroprotective roles of this neurotransmitter in developing CNS. Mechanisms of glutamate-mediated neuroprotection are still under scrutiny. In this study, we investigated mediators of glutamate-induced neuroprotection, and tested whether this neurotransmitter controls programmed cell death in the developing retina. The protective effect of N-methyl-d-aspartate (NMDA) upon differentiating cells of retinal explants was completely blocked by a neutralizing antibody to brain-derived neurotrophic factor (BDNF), but not by an antibody to neurotrophin-4 (NT-4). Consistently, chronic activation of NMDA receptor increased the expression of BDNF and trkB mRNA, as well as BDNF protein content, but did not change the content of NT-4 mRNA in retinal tissue. Furthermore, we showed that in vivo inactivation of NMDA receptor by intraperitoneal injections of MK-801 increased natural cell death of specific cell populations of the post-natal retina. Our results show that chronic activation of NMDA receptors in vitro induces a BDNF-dependent neuroprotective state in differentiating retinal cells, and that NMDA receptor activation controls programmed cell death of developing retinal neurons in vivo. | | 16181428
|
The neurotrophins nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 are survival and activation factors for eosinophils in patients with allergic bronchial asthma. Nassenstein, Christina, et al. J. Exp. Med., 198: 455-67 (2003)
2003
| | 12900521
|
The neurotrophins NT3 and BDNF induce selective specification of neuropeptide coexpression and neuronal connectivity in arcuate and periventricular hypothalamic neurons in vitro. Petit, Florence, et al. Neuroendocrinology, 75: 55-69 (2002)
2002
| | 11810035
|