Spindle assembly checkpoint acquisition at the mid-blastula transition. Zhang, M; Kothari, P; Lampson, MA PloS one
10
e0119285
2015
Show Abstract
The spindle assembly checkpoint (SAC) maintains the fidelity of chromosome segregation during mitosis. Nonpathogenic cells lacking the SAC are typically only found in cleavage stage metazoan embryos, which do not acquire functional checkpoints until the mid-blastula transition (MBT). It is unclear how proper SAC function is acquired at the MBT, though several models exist. First, SAC acquisition could rely on transcriptional activity, which increases dramatically at the MBT. Embryogenesis prior to the MBT relies primarily on maternally loaded transcripts, and if SAC signaling components are not maternally supplied, the SAC would depend on zygotic transcription at the MBT. Second, checkpoint acquisition could depend on the Chk1 kinase, which is activated at the MBT to elongate cell cycles and is required for the SAC in somatic cells. Third, SAC function could depend on a threshold nuclear to cytoplasmic (N:C) ratio, which increases during pre-MBT cleavage cycles and dictates several MBT events like zygotic transcription and cell cycle remodeling. Finally, the SAC could by regulated by a timer mechanism that coincides with other MBT events but is independent of them. Using zebrafish embryos we show that SAC acquisition at the MBT is independent of zygotic transcription, indicating that the checkpoint program is maternally supplied. Additionally, by precociously lengthening cleavage cycles with exogenous Chk1 activity, we show that cell cycle lengthening and Chk1 activity are not sufficient for SAC acquisition. Furthermore, we find that SAC acquisition can be uncoupled from the N:C ratio. Together, our findings indicate that SAC acquisition is regulated by a maternally programmed developmental timer. | Immunofluorescence | 25741707
|
Genetic manipulation of reptilian embryos: toward an understanding of cortical development and evolution. Nomura, T; Yamashita, W; Gotoh, H; Ono, K Frontiers in neuroscience
9
45
2015
Show Abstract
The mammalian neocortex is a remarkable structure that is characterized by tangential surface expansion and six-layered lamination. However, how the mammalian neocortex emerged during evolution remains elusive. Because all modern reptiles have a homolog of the neocortex at the dorsal pallium, developmental analyses of the reptilian cortex are valuable to explore the origin of the neocortex. However, reptilian cortical development and the underlying molecular mechanisms remain unclear, mainly due to technical difficulties with sample collection and embryonic manipulation. Here, we introduce a method of embryonic manipulations for the Madagascar ground gecko and Chinese softshell turtle. We established in ovo electroporation and an ex ovo culture system to address neural stem cell dynamics, neuronal differentiation and migration. Applications of these techniques illuminate the developmental mechanisms underlying reptilian corticogenesis, which provides significant insight into the evolutionary steps of different types of cortex and the origin of the mammalian neocortex. | | 25759636
|
Phosphoinositide 3-kinase alpha-dependent regulation of branching morphogenesis in murine embryonic lung: evidence for a role in determining morphogenic properties of FGF7. Carter, E; Miron-Buchacra, G; Goldoni, S; Danahay, H; Westwick, J; Watson, ML; Tosh, D; Ward, SG PloS one
9
e113555
2014
Show Abstract
Branching morphogenesis is a critical step in the development of many epithelial organs. The phosphoinositide-3-kinase (PI3K) pathway has been identified as a central component of this process but the precise role has not been fully established. Herein we sought to determine the role of PI3K in murine lung branching using a series of pharmacological inhibitors directed at this pathway. The pan-class I PI3K inhibitor ZSTK474 greatly enhanced the branching potential of whole murine lung explants as measured by an increase in the number of terminal branches compared with controls over 48 hours. This enhancement of branching was also observed following inhibition of the downstream signalling components of PI3K, Akt and mTOR. Isoform selective inhibitors of PI3K identified that the alpha isoform of PI3K is a key driver in branching morphogenesis. To determine if the effect of PI3K inhibition on branching was specific to the lung epithelium or secondary to an effect on the mesenchyme we assessed the impact of PI3K inhibition in cultures of mesenchyme-free lung epithelium. Isolated lung epithelium cultured with FGF7 formed large cyst-like structures, whereas co-culture with FGF7 and ZSTK474 induced the formation of defined branches with an intact lumen. Together these data suggest a novel role for PI3K in the branching program of the murine embryonic lung contradictory to that reported in other branching organs. Our observations also point towards PI3K acting as a morphogenic switch for FGF7 signalling. | | 25460003
|
CENP-A is essential for cardiac progenitor cell proliferation. McGregor, M; Hariharan, N; Joyo, AY; Margolis, RL; Sussman, MA Cell cycle (Georgetown, Tex.)
13
739-48
2014
Show Abstract
Centromere protein A (CENP-A) is a homolog of histone H3 that epigenetically marks the heterochromatin of chromosomes. CENP-A is a critical component of the cell cycle machinery that is necessary for proper assembly of the mitotic spindle. However, the role of CENP-A in the heart and cardiac progenitor cells (CPCs) has not been previously studied. This study shows that CENP-A is expressed in CPCs and declines with age. Silencing CENP-A results in a decreased CPC growth rate, reduced cell number in phase G 2/M of the cell cycle, and increased senescence associated β-galactosidase activity. Lineage commitment is not affected by CENP-A silencing, suggesting that cell cycle arrest induced by loss of CENP-A is a consequence of senescence and not differentiation. CENP-A knockdown does not exacerbate cell death in undifferentiated CPCs, but increases apoptosis upon lineage commitment. Taken together, these results indicate that CPCs maintain relatively high levels of CENP-A early in life, which is necessary for sustaining proliferation, inhibiting senescence, and promoting survival following differentiation of CPCs. | Immunohistochemistry | 24362315
|
Rac1-dependent recruitment of PAK2 to G2 phase centrosomes and their roles in the regulation of mitotic entry. May, M; Schelle, I; Brakebusch, C; Rottner, K; Genth, H Cell cycle (Georgetown, Tex.)
13
2211-21
2014
Show Abstract
During mitotic entry, the centrosomes provide a scaffold for initial activation of the CyclinB/Cdk1 complex, the mitotic kinase Aurora A, and the Aurora A-activating kinase p21-activated kinase (PAK). The activation of PAK at the centrosomes is yet regarded to happen independently of the Rho-GTPases Rac/Cdc42. In this study, Rac1 (but not RhoA or Cdc42) is presented to associate with the centrosomes from early G2 phase until prometaphase in a cell cycle-dependent fashion, as evidenced by western blot analysis of prepared centrosomes and by immunolabeling. PAK associates with the G2/M-phase centrosomes in a Rac1-dependent fashion. Furthermore, specific inhibition of Rac1 by C. difficile toxinB-catalyzed glucosylation or by knockout results in inhibited activation of PAK1/2, Aurora A, and the CyclinB/Cdk1 complex in late G2 phase/prophase and delayed mitotic entry. Inhibition of PAK activation at late G2-phase centrosomes caused by Rac1 inactivation coincides with impeded activation of Aurora A and the CyclinB/Cdk1 complex and delayed mitotic entry. | | 24840740
|
Selective disruption of aurora C kinase reveals distinct functions from aurora B kinase during meiosis in mouse oocytes. Balboula, AZ; Schindler, K PLoS genetics
10
e1004194
2014
Show Abstract
Aurora B kinase (AURKB) is the catalytic subunit of the chromosomal passenger complex (CPC), an essential regulator of chromosome segregation. In mitosis, the CPC is required to regulate kinetochore microtubule (K-MT) attachments, the spindle assembly checkpoint, and cytokinesis. Germ cells express an AURKB homolog, AURKC, which can also function in the CPC. Separation of AURKB and AURKC function during meiosis in oocytes by conventional approaches has not been successful. Therefore, the meiotic function of AURKC is still not fully understood. Here, we describe an ATP-binding-pocket-AURKC mutant, that when expressed in mouse oocytes specifically perturbs AURKC-CPC and not AURKB-CPC function. Using this mutant we show for the first time that AURKC has functions that do not overlap with AURKB. These functions include regulating localized CPC activity and regulating chromosome alignment and K-MT attachments at metaphase of meiosis I (Met I). We find that AURKC-CPC is not the sole CPC complex that regulates the spindle assembly checkpoint in meiosis, and as a result most AURKC-perturbed oocytes arrest at Met I. A small subset of oocytes do proceed through cytokinesis normally, suggesting that AURKC-CPC is not the sole CPC complex during telophase I. But, the resulting eggs are aneuploid, indicating that AURKC is a critical regulator of meiotic chromosome segregation in female gametes. Taken together, these data suggest that mammalian oocytes contain AURKC to efficiently execute meiosis I and ensure high-quality eggs necessary for sexual reproduction. | | 24586209
|
An increase in MECP2 dosage impairs neural tube formation. Petazzi, P; Akizu, N; García, A; Estarás, C; Martínez de Paz, A; Rodríguez-Paredes, M; Martínez-Balbás, MA; Huertas, D; Esteller, M Neurobiology of disease
67
49-56
2014
Show Abstract
Epigenetic mechanisms are fundamental for shaping the activity of the central nervous system (CNS). Methyl-CpG binding protein 2 (MECP2) acts as a bridge between methylated DNA and transcriptional effectors responsible for differentiation programs in neurons. The importance of MECP2 dosage in CNS is evident in Rett Syndrome and MECP2 duplication syndrome, which are neurodevelopmental diseases caused by loss-of-function mutations or duplication of the MECP2 gene, respectively. Although many studies have been performed on Rett syndrome models, little is known about the effects of an increase in MECP2 dosage. Herein, we demonstrate that MECP2 overexpression affects neural tube formation, leading to a decrease in neuroblast proliferation in the neural tube ventricular zone. Furthermore, an increase in MECP2 dose provokes premature differentiation of neural precursors accompanied by greater cell death, resulting in a loss of neuronal populations. Overall, our data indicate that correct MECP2 expression levels are required for proper nervous system development. | | 24657916
|
TGF-β mediates early angiogenesis and latent fibrosis in an Emilin1-deficient mouse model of aortic valve disease. Munjal, C; Opoka, AM; Osinska, H; James, JF; Bressan, GM; Hinton, RB Disease models & mechanisms
7
987-96
2014
Show Abstract
Aortic valve disease (AVD) is characterized by elastic fiber fragmentation (EFF), fibrosis and aberrant angiogenesis. Emilin1 is an elastin-binding glycoprotein that regulates elastogenesis and inhibits TGF-β signaling, but the role of Emilin1 in valve tissue is unknown. We tested the hypothesis that Emilin1 deficiency results in AVD, mediated by non-canonical (MAPK/phosphorylated Erk1 and Erk2) TGF-β dysregulation. Using histology, immunohistochemistry, electron microscopy, quantitative gene expression analysis, immunoblotting and echocardiography, we examined the effects of Emilin1 deficiency (Emilin1-/-) in mouse aortic valve tissue. Emilin1 deficiency results in early postnatal cell-matrix defects in aortic valve tissue, including EFF, that progress to latent AVD and premature death. The Emilin1-/- aortic valve displays early aberrant provisional angiogenesis and late neovascularization. In addition, Emilin1-/- aortic valves are characterized by early valve interstitial cell activation and proliferation and late myofibroblast-like cell activation and fibrosis. Interestingly, canonical TGF-β signaling (phosphorylated Smad2 and Smad3) is upregulated constitutively from birth to senescence, whereas non-canonical TGF-β signaling (phosphorylated Erk1 and Erk2) progressively increases over time. Emilin1 deficiency recapitulates human fibrotic AVD, and advanced disease is mediated by non-canonical (MAPK/phosphorylated Erk1 and Erk2) TGF-β activation. The early manifestation of EFF and aberrant angiogenesis suggests that these processes are crucial intermediate factors involved in disease progression and therefore might provide new therapeutic targets for human AVD. | Immunohistochemistry | 25056700
|
Dynamic changes in the genomic localization of DNA replication-related element binding factor during the cell cycle. Gurudatta, BV; Yang, J; Van Bortle, K; Donlin-Asp, PG; Corces, VG Cell cycle (Georgetown, Tex.)
12
1605-15
2013
Show Abstract
DREF was first characterized for its role in the regulation of transcription of genes encoding proteins involved in DNA replication and found to interact with sequences similar to the DNA recognition motif of the BEAF-32 insulator protein. Insulators are DNA-protein complexes that mediate intra- and inter-chromosome interactions. Several DNA-binding insulator proteins have been described in Drosophila, including BEAF-32, dCTCF and Su(Hw). Here we find that DREF and BEAF-32 co-localize at the same genomic sites, but their enrichment shows an inverse correlation. Furthermore, DREF co-localizes in the genome with other insulator proteins, suggesting that the function of this protein may require components of Drosophila insulators. This is supported by the finding that mutations in insulator proteins modulate DREF-induced cell proliferation. DREF persists bound to chromatin during mitosis at a subset of sites where it also co-localizes with dCTCF, BEAF-32 and CP190. These sites are highly enriched for sites where Orc2 and Mcm2 are present during interphase and at the borders of topological domains of chromosomes defined by Hi-C. The results suggest that DREF and insulator proteins may help maintain chromosome organization during the cell cycle and mark a subset of genomic sites for the assembly of pre-replication complexes and gene bookmarking during the M/G1 transition. | Immunofluorescence | 23624840
|
Adenovirus E4orf4 protein-induced death of p53-/- H1299 human cancer cells follows a G1 arrest of both tetraploid and diploid cells due to a failure to initiate DNA synthesis. Cabon, L; Sriskandarajah, N; Mui, MZ; Teodoro, JG; Blanchette, P; Branton, PE Journal of virology
87
13168-78
2013
Show Abstract
The adenovirus E4orf4 protein selectively kills human cancer cells independently of p53 and thus represents a potentially promising tool for the development of novel antitumor therapies. Previous studies suggested that E4orf4 induces an arrest or a delay in mitosis and that both this effect and subsequent cell death rely largely on an interaction with the B55 regulatory subunit of protein phosphatase 2A. In the present report, we show that the death of human H1299 lung carcinoma cells induced by expression of E4orf4 is typified not by an accumulation of cells arrested in mitosis but rather by the presence of both tetraploid and diploid cells that are arrested in G1 because they are unable to initiate DNA synthesis. We believe that these E4orf4-expressing cells eventually die by various processes, including those resulting from mitotic catastrophe. | Western Blotting | 24067978
|