Impact of hydroxycarbamide and interferon-α on red cell adhesion and membrane protein expression in polycythemia vera. Brusson, M; De Grandis, M; Cochet, S; Bigot, S; Marin, M; Leduc, M; Guillonneau, F; Mayeux, P; Peyrard, T; Chomienne, C; Le Van Kim, C; Cassinat, B; Kiladjian, JJ; El Nemer, W Haematologica
103
972-981
2018
Show Abstract
Polycythemia vera is a chronic myeloproliferative neoplasm characterized by the JAK2V617F mutation, elevated blood cell counts and a high risk of thrombosis. Although the red cell lineage is primarily affected by JAK2V617F, the impact of mutated JAK2 on circulating red blood cells is poorly documented. Recently, we showed that in polycythemia vera, erythrocytes had abnormal expression of several proteins including Lu/BCAM adhesion molecule and proteins from the endoplasmic reticulum, mainly calreticulin and calnexin. Here we investigated the effects of hydroxycarbamide and interferon-α treatments on the expression of erythroid membrane proteins in a cohort of 53 patients. Surprisingly, while both drugs tended to normalize calreticulin expression, proteomics analysis showed that hydroxycarbamide deregulated the expression of 53 proteins in red cell ghosts, with overexpression and downregulation of 37 and 16 proteins, respectively. Within over-expressed proteins, hydroxycarbamide was found to enhance the expression of adhesion molecules such as Lu/BCAM and CD147, while interferon-α did not. In addition, we found that hydroxycarbamide increased Lu/BCAM phosphorylation and exacerbated red cell adhesion to its ligand laminin. Our study reveals unexpected adverse effects of hydroxycarbamide on red cell physiology in polycythemia vera and provides new insights into the effects of this molecule on gene regulation and protein recycling or maturation during erythroid differentiation. Furthermore, our study shows deregulation of Lu/BCAM and CD147 that are two ubiquitously expressed proteins linked to progression of solid tumors, paving the way for future studies to address the role of hydroxycarbamide in tissues other than blood cells in myeloproliferative neoplasms. | 29599206
|
Hydroxycarbamide decreases sickle reticulocyte adhesion to resting endothelium by inhibiting endothelial lutheran/basal cell adhesion molecule (Lu/BCAM) through phosphodiesterase 4A activation. Chaar, V; Laurance, S; Lapoumeroulie, C; Cochet, S; De Grandis, M; Colin, Y; Elion, J; Le Van Kim, C; El Nemer, W J Biol Chem
289
11512-21
2014
Show Abstract
Vaso-occlusive crises are the main acute complication in sickle cell disease. They are initiated by abnormal adhesion of circulating blood cells to vascular endothelium of the microcirculation. Several interactions involving an intricate network of adhesion molecules have been described between sickle red blood cells and the endothelial vascular wall. We have shown previously that young sickle reticulocytes adhere to resting endothelial cells through the interaction of α4β1 integrin with endothelial Lutheran/basal cell adhesion molecule (Lu/BCAM). In the present work, we investigated the functional impact of endothelial exposure to hydroxycarbamide (HC) on this interaction using transformed human bone marrow endothelial cells and primary human pulmonary microvascular endothelial cells. Adhesion of sickle reticulocytes to HC-treated endothelial cells was decreased despite the HC-derived increase of Lu/BCAM expression. This was associated with decreased phosphorylation of Lu/BCAM and up-regulation of the cAMP-specific phosphodiesterase 4A expression. Our study reveals a novel mechanism for HC in endothelial cells where it could modulate the function of membrane proteins through the regulation of phosphodiesterase expression and cAMP-dependent signaling pathways. | 24616094
|
JAK2V617F activates Lu/BCAM-mediated red cell adhesion in polycythemia vera through an EpoR-independent Rap1/Akt pathway. De Grandis, M; Cambot, M; Wautier, MP; Cassinat, B; Chomienne, C; Colin, Y; Wautier, JL; Le Van Kim, C; El Nemer, W Blood
121
658-65
2013
Show Abstract
Polycythemia vera (PV) is characterized by an increased RBC mass, spontaneous erythroid colony formation, and the JAK2V617F mutation. PV is associated with a high risk of mesenteric and cerebral thrombosis. PV RBC adhesion to endothelial laminin is increased and mediated by phosphorylated erythroid Lu/BCAM. In the present work, we investigated the mechanism responsible for Lu/BCAM phosphorylation in the presence of JAK2V617F using HEL and BaF3 cell lines as well as RBCs from patients with PV. High levels of Rap1-GTP were found in HEL and BaF3 cells expressing JAK2V617F compared with BaF3 cells with wild-type JAK2. This finding was associated with increased Akt activity, Lu/BCAM phosphorylation, and cell adhesion to laminin that were inhibited by the dominant-negative Rap1S17N or by the specific Rap1 inhibitor GGTI-298. Surprisingly, knocking-down EpoR in HEL cells did not alter Akt activity or cell adhesion to laminin. Our findings reveal a novel EpoR-independent Rap1/Akt signaling pathway that is activated by JAK2V617F in circulating PV RBCs and responsible for Lu/BCAM activation. This new characteristic of JAK2V617F could play a critical role in initiating abnormal interactions among circulating and endothelial cells in patients with PV. | 23160466
|
Decreased sickle red blood cell adhesion to laminin by hydroxyurea is associated with inhibition of Lu/BCAM protein phosphorylation. Bartolucci, P; Chaar, V; Picot, J; Bachir, D; Habibi, A; Fauroux, C; Galactéros, F; Colin, Y; Le Van Kim, C; El Nemer, W Blood
116
2152-9
2010
Show Abstract
Sickle cell disease is characterized by painful vaso-occlusive crises during which abnormal interactions between erythroid adhesion molecules and vessel-wall proteins are thought to play a critical role. Hydroxyurea, the only drug with proven benefit in sickle cell disease, diminishes these interactions, but its mechanism of action is not fully understood. We report that, under hydroxyurea, expression of the unique erythroid laminin receptor Lu/BCAM was increased, but red blood cell adhesion to laminin decreased. Because Lu/BCAM phosphorylation is known to activate cell adhesion to laminin, it was evaluated and found to be dramatically lower in hydroxyurea-treated patients. Analysis of the protein kinase A pathway showed decreased intracellular levels of the upstream effector cyclic adenosine monophosphate during hydroxyurea treatment. Using a cellular model expressing recombinant Lu/BCAM, we showed that hydroxyurea led to decreased intracellular cyclic adenosine monophosphate levels and diminished Lu/BCAM phosphorylation and cell adhesion. We provide evidence that hydroxyurea could reduce abnormal sickle red blood cell adhesion to the vascular wall by regulating the activation state of adhesion molecules independently of their expression level. | 20566895
|
Increased adhesion to endothelial cells of erythrocytes from patients with polycythemia vera is mediated by laminin alpha5 chain and Lu/BCAM. Wautier, MP; El Nemer, W; Gane, P; Rain, JD; Cartron, JP; Colin, Y; Le Van Kim, C; Wautier, JL Blood
110
894-901
2007
Show Abstract
Patients with polycythemia vera (PV) have a JAK2 (a cytosolic tyrosine kinase) mutation and an increased risk of vascular thrombosis related to red blood cell (RBC) mass and platelet activation. We investigated functional RBC abnormalities that could be involved in thrombosis. RBC adhesion to human umbilical vein endothelial cells (HUVECs) was measured by a radiometric technique and in a flow system by video microscopy, and adhesion molecule expression was determined using specific antibodies (against CD36, CD49d, ICAM-4, Lu/BCAM, CD147, and CD47) and flow cytometry in a group of 38 patients with PV and a group of 36 healthy volunteers. Adhesion of PV RBCs was 3.7-fold higher than that of normal RBCs (P < .001). Adhesion was inhibited when PV RBCs were incubated with anti-Lutheran blood group/basal cell adhesion molecule (Lu/BCAM) or when HUVECs were treated with anti-laminin alpha(5) and to a lesser extent with anti-alpha(3) integrin. Lu/BCAM was constitutively phosphorylated in PV RBCs. Transfection of K562 cells with JAK2 617V>F resulted in increased expression and phosphorylation of Lu/BCAM. Phosphorylation of Lu/BCAM increases RBC adhesion. Our results indicate that JAK2 mutation might be linked to Lu/BCAM modification and increased RBC adhesiveness, which may be a factor favoring thrombosis in PV. | 17412890
|