Millipore Sigma Vibrant Logo
 

cell+culture+systems


152 Results Erweiterte Suche  
Suchergebnisse

Suche eingrenzen Grenzen Sie Ihre Suche mit den nachstehenden Filtern ein

Dokumententyp

  • (51)
  • (1)
Finden Sie nicht, was Sie suchen?
Kontaktieren Sie bitten
den Kundenservice

 
Benötigen Sie Hilfe, um ein Dokument zu finden?
  • Verwenden Sie die Dokumentensuche, um nach Analysenzertifikaten, Qualitätszertifikaten oder Sicherheitsdatenblättern zu suchen.
  • Wenn Sie bei der Suche einer Gebrauchsanleitung oder eines Benutzerhandbuchs Hilfe benötigen, kontaktieren Sie bitte den Kundenservice.
  • Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells. 24465853

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4-10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB4304
    Produktbezeichnung:
    Anti-Stage-Specific Embryonic Antigen-4 Antibody, clone MC-813-70
  • Apoptosis-like cell death induction and aberrant fibroblast properties in human incisional hernia fascia. 21641387

    Incisional hernia often occurs following laparotomy and can be a source of serious problems. Although there is evidence that a biological cause may underlie its development, the mechanistic link between the local tissue microenvironment and tissue rupture is lacking. In this study, we used matched tissue-based and in vitro primary cell culture systems to examine the possible involvement of fascia fibroblasts in incisional hernia pathogenesis. Fascia biopsies were collected at surgery from incisional hernia patients and non-incisional hernia controls. Tissue samples were analyzed by histology and immunoblotting methods. Fascia primary fibroblast cultures were assessed at morphological, ultrastructural, and functional levels. We document tissue and fibroblast loss coupled to caspase-3 activation and induction of apoptosis-like cell-death mechanisms in incisional hernia fascia. Alterations in cytoskeleton organization and solubility were also observed. Incisional hernia fibroblasts showed a consistent phenotype throughout early passages in vitro, which was characterized by significantly enhanced cell proliferation and migration, reduced adhesion, and altered cytoskeleton properties, as compared to non-incisional hernia fibroblasts. Moreover, incisional hernia fibroblasts displayed morphological and ultrastructural alterations compatible with autophagic processes or lysosomal dysfunction, together with enhanced sensitivity to proapoptotic challenges. Overall, these data suggest an ongoing complex interplay of cell death induction, aberrant fibroblast function, and tissue loss in incisional hernia fascia, which may significantly contribute to altered matrix maintenance and tissue rupture in vivo.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    CBL171
    Produktbezeichnung:
    Anti-Actin Antibody, smooth muscle, clone ASM-1
  • Control of neural cell composition in poly(ethylene glycol) hydrogel culture with soluble factors. 21823990

    Poly(ethylene glycol) (PEG) hydrogels are being developed as cell delivery vehicles that have great potential to improve neuronal replacement therapies. Current research priorities include (1) characterizing neural cell growth within PEG hydrogels relative to standard culture systems and (2) generating neuronal-enriched populations within the PEG hydrogel environment. This study compares the percentage of neural precursor cells (NPCs), neurons, and glia present when dissociated neural cells are seeded within PEG hydrogels relative to standard monolayer culture. Results demonstrate that PEG hydrogels enriched the initial cell population for NPCs, which subsequently gave rise to neurons, then to glia. Relative to monolayer culture, PEG hydrogels maintained an increased percentage of NPCs and a decreased percentage of glia. This neurogenic advantage of PEG hydrogels is accentuated in the presence of basic fibroblast growth factor and epidermal growth factor, which more potently increase NPC and neuronal expression markers when applied to cells cultured within PEG hydrogels. Finally, this work demonstrates that glial differentiation can be selectively eliminated upon supplementation with a γ-secretase inhibitor. Together, this study furthers our understanding of how the PEG hydrogel environment influences neural cell composition and also describes select soluble factors that are useful in generating neuronal-enriched populations within the PEG hydrogel environment.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • iRFP is a sensitive marker for cell number and tumor growth in high-throughput systems. 24200967

    GFP and luciferase are used extensively as markers both in vitro and in vivo although both have limitations. The utility of GFP fluorescence is restricted by high background signal and poor tissue penetrance. Luciferase throughput is limited in vitro by the requirement for cell lysis, while in vivo, luciferase readout is complicated by the need for substrate injection and the dependence on endogenous ATP. Here we show that near-infrared fluorescent protein in combination with widely available near-infrared scanners overcomes these obstacles and allows for the accurate determination of cell number in vitro and tumor growth in vivo in a high-throughput manner and at negligible per-well costs. This system represents a significant advance in tracking cell proliferation in tissue culture as well as in animals, with widespread applications in cell biology.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB1501
    Produktbezeichnung:
    Anti-Actin Antibody, clone C4
  • IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. 22251702

    HBV infection remains a leading cause of death worldwide. IFN-α inhibits viral replication in vitro and in vivo, and pegylated IFN-α is a commonly administered treatment for individuals infected with HBV. The HBV genome contains a typical IFN-stimulated response element (ISRE), but the molecular mechanisms by which IFN-α suppresses HBV replication have not been established in relevant experimental systems. Here, we show that IFN-α inhibits HBV replication by decreasing the transcription of pregenomic RNA (pgRNA) and subgenomic RNA from the HBV covalently closed circular DNA (cccDNA) minichromosome, both in cultured cells in which HBV is replicating and in mice whose livers have been repopulated with human hepatocytes and infected with HBV. Administration of IFN-α resulted in cccDNA-bound histone hypoacetylation as well as active recruitment to the cccDNA of transcriptional corepressors. IFN-α treatment also reduced binding of the STAT1 and STAT2 transcription factors to active cccDNA. The inhibitory activity of IFN-α was linked to the IRSE, as IRSE-mutant HBV transcribed less pgRNA and could not be repressed by IFN-α treatment. Our results identify a molecular mechanism whereby IFN-α mediates epigenetic repression of HBV cccDNA transcriptional activity, which may assist in the development of novel effective therapeutics.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. 22287976

    The aim of the current study was to evaluate primary (human bronchial epithelial cells, HBEC) and non-primary (Calu-3, BEAS-2B, BEAS-2B R1) bronchial epithelial cell culture systems as air-liquid interface- (ALI-) differentiated models for asthma research. Ability to differentiate into goblet (MUC5AC+) and ciliated (β-Tubulin IV+) cells was evaluated by confocal imaging and qPCR. Expression of tight junction/adhesion proteins (ZO-1, E-Cadherin) and development of transepithelial electrical resistance (TEER) were assessed. Primary cells showed localised MUC5AC, β-Tubulin IV, ZO-1, and E-Cadherin and developed TEER with, however, a large degree of inter- and intradonor variation. Calu-3 cells developed a more reproducible TEER and a phenotype similar to primary cells although with diffuse β-Tubulin IV staining. BEAS-2B cells did not differentiate or develop tight junctions. These data highlight the challenges in working with primary cell models and the need for careful characterisation and selection of systems to answer specific research questions.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB3199Z
    Produktbezeichnung:
    Anti-E-Cadherin Antibody, clone 67A4, Azide Free
  • Subcellular localization of LGN during mitosis: evidence for its cortical localization in mitotic cell culture systems and its requirement for normal cell cycle progressi ... 12925752

    Mammalian LGN/AGS3 proteins and their Drosophila Pins orthologue are cytoplasmic regulators of G-protein signaling. In Drosophila, Pins localizes to the lateral cortex of polarized epithelial cells and to the apical cortex of neuroblasts where it plays important roles in their asymmetric division. Using overexpression studies in different cell line systems, we demonstrate here that, like Drosophila Pins, LGN can exhibit enriched localization at the cell cortex, depending on the cell cycle and the culture system used. We find that in WISH, PC12, and NRK but not COS cells, LGN is largely directed to the cell cortex during mitosis. Overexpression of truncated protein domains further identified the Galpha-binding C-terminal portion of LGN as a sufficient domain for cortical localization in cell culture. In mitotic COS cells that normally do not exhibit cortical LGN localization, LGN is redirected to the cell cortex upon overexpression of Galpha subunits of heterotrimeric G-proteins. The results also show that the cortical localization of LGN is dependent on microfilaments and that interfering with LGN function in cultured cell lines causes early disruption to cell cycle progression.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Co-expression of beta-amyloid precursor protein (betaAPP) and apolipoprotein E in cell culture: analysis of betaAPP processing. 9174001

    Apolipoprotein E (ApoE) is the major genetic risk factor for Alzheimer's disease (AD). The ApoE4 allele is associated with earlier disease onset and greater cerebral deposition of the amyloid beta peptide (Abeta), the major constituent of senile (amyloid) plaques. The molecular mechanism underlying these effects of ApoE4 remains unclear; ApoE alleles could have different influences on Abeta production, extracellular aggregation, or clearance. Because the missense mutations on chromosomes 14 and 21 that cause familial forms of AD appear to lead to increased secretion of Abeta, it is important to determine whether ApoE4 has a similar effect. Here, we have examined the effects of all three ApoE alleles on the processing of betaAPP and the secretion of Abeta in intact cells. We established neural (HS683 human glioma) and non-neural (Chinese hamster ovary) cell culture systems that constitutively secrete both ApoE and Abeta at concentrations like those in human cerebrospinal fluid. betaAPP metabolites, generated in the presence of each ApoE allele, were analysed and quantified by two methods: immunoprecipitation and phosphorimaging, and ELISA. We detected no consistent allele-specific effects of ApoE on betaAPP processing in either cell type. Our data suggest that the higher amyloid burden found in AD subjects expressing ApoE4 is not due to increased amyloidogenic processing of betaAPP, in contrast to findings in AD linked to chromosome 14 or 21. These co-expressing cell lines will be useful in the further search for the effects of ApoE on Abeta aggregation or clearance under physiologically relevant conditions.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    AB947
    Produktbezeichnung:
    Anti-Apolipoprotein E Antibody
  • Fibronectin matrix assembly regulates alpha5beta1-mediated cell cohesion. 14718567

    Integrin-extracellular matrix (ECM) interactions in two-dimensional (2D) culture systems are widely studied (Goldstein and DiMilla, 2002. J Biomed. Mater. Res. 59, 665-675; Koo et al., 2002. J. Cell Sci. 115, 1423-1433). Less understood is the role of the ECM in promoting intercellular cohesion in three-dimensional (3D) environments. We have demonstrated that the alpha5beta1-integrin mediates strong intercellular cohesion of 3D cellular aggregates (Robinson et al., 2003. J. Cell Sci. 116, 377-386). To further investigate the mechanism of alpha5beta1-mediated cohesivity, we used a series of chimeric alpha5beta1-integrin-expressing cells cultured as multilayer cellular aggregates. In these cell lines, the alpha5 subunit cytoplasmic domain distal to the GFFKR sequence was truncated, replaced with that of the integrin alpha4, the integrin alpha2, or maintained intact. Using these cells, alpha5beta1-integrin-mediated cell aggregation, compaction and cohesion were determined and correlated with FN matrix assembly. The data presented demonstrate that cells cultured in the absence of external mechanical support can assemble a FN matrix that promotes integrin-mediated aggregate compaction and cohesion. Further, inhibition of FN matrix assembly blocks the intercellular associations required for compaction, resulting in cell dispersal. These results demonstrate that FN matrix assembly contributes significantly to tissue cohesion and represents an alternative mechanism for regulating tissue architecture.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere