Absence of γ-sarcoglycan alters the response of p70S6 kinase to mechanical perturbation in murine skeletal muscle. Moorwood, C; Philippou, A; Spinazzola, J; Keyser, B; Macarak, EJ; Barton, ER Skeletal muscle
4
13
2014
Abstract anzeigen
The dystrophin glycoprotein complex (DGC) is located at the sarcolemma of muscle fibers, providing structural integrity. Mutations in and loss of DGC proteins cause a spectrum of muscular dystrophies. When only the sarcoglycan subcomplex is absent, muscles display severe myofiber degeneration, but little susceptibility to contractile damage, suggesting that disease occurs not by structural deficits but through aberrant signaling, namely, loss of normal mechanotransduction signaling through the sarcoglycan complex. We extended our previous studies on mechanosensitive, γ-sarcoglycan-dependent ERK1/2 phosphorylation, to determine whether additional pathways are altered with the loss of γ-sarcoglycan.We examined mechanotransduction in the presence and absence of γ-sarcoglycan, using C2C12 myotubes, and primary cultures and isolated muscles from C57Bl/6 (C57) and γ-sarcoglycan-null (γ-SG(-/-)) mice. All were subjected to cyclic passive stretch. Signaling protein phosphorylation was determined by immunoblotting of lysates from stretched and non-stretched samples. Calcium dependence was assessed by maintaining muscles in calcium-free or tetracaine-supplemented Ringer's solution. Dependence on mTOR was determined by stretching isolated muscles in the presence or absence of rapamycin.C2C12 myotube stretch caused a robust increase in P-p70S6K, but decreased P-FAK and P-ERK2. Neither Akt nor ERK1 were responsive to passive stretch. Similar but non-significant trends were observed in C57 primary cultures in response to stretch, and γ-SG(-/-) cultures displayed no p70S6K response. In contrast, in isolated muscles, p70S6K was mechanically responsive. Basal p70S6K activation was elevated in muscles of γ-SG(-/-) mice, in a calcium-independent manner. p70S6K activation increased with stretch in both C57 and γ-SG(-/-) isolated muscles, and was sustained in γ-SG(-/-) muscles, unlike the transient response in C57 muscles. Rapamycin treatment blocked all of p70S6K activation in stretched C57 muscles, and reduced downstream S6RP phosphorylation. However, even though rapamycin treatment decreased p70S6K activation in stretched γ-SG(-/-) muscles, S6RP phosphorylation remained elevated.p70S6K is an important component of γ-sarcoglycan-dependent mechanotransduction in skeletal muscle. Our results suggest that loss of γ-sarcoglycan uncouples the response of p70S6K to stretch and implies that γ-sarcoglycan is important for inactivation of this pathway. Overall, we assert that altered load-sensing mechanisms exist in muscular dystrophies where the sarcoglycans are absent. | 25024843
|
Smooth muscle tension induces invasive remodeling of the zebrafish intestine. Seiler, C; Davuluri, G; Abrams, J; Byfield, FJ; Janmey, PA; Pack, M PLoS biology
10
e1001386
2011
Abstract anzeigen
The signals that initiate cell invasion are not well understood, but there is increasing evidence that extracellular physical signals play an important role. Here we show that epithelial cell invasion in the intestine of zebrafish meltdown (mlt) mutants arises in response to unregulated contractile tone in the surrounding smooth muscle cell layer. Physical signaling in mlt drives formation of membrane protrusions within the epithelium that resemble invadopodia, matrix-degrading protrusions present in invasive cancer cells. Knockdown of Tks5, a Src substrate that is required for invadopodia formation in mammalian cells blocked formation of the protrusions and rescued invasion in mlt. Activation of Src-signaling induced invadopodia-like protrusions in wild type epithelial cells, however the cells did not migrate into the tissue stroma, thus indicating that the protrusions were required but not sufficient for invasion in this in vivo model. Transcriptional profiling experiments showed that genes responsive to reactive oxygen species (ROS) were upregulated in mlt larvae. ROS generators induced invadopodia-like protrusions and invasion in heterozygous mlt larvae but had no effect in wild type larvae. Co-activation of oncogenic Ras and Wnt signaling enhanced the responsiveness of mlt heterozygotes to the ROS generators. These findings present the first direct evidence that invadopodia play a role in tissue cell invasion in vivo. In addition, they identify an inducible physical signaling pathway sensitive to redox and oncogenic signaling that can drive this process. | 22973180
|