Wenn Sie das Fenster schließen, wird Ihre Konfiguration nicht gespeichert, es sei denn, Sie haben Ihren Artikel in die Bestellung aufgenommen oder zu Ihren Favoriten hinzugefügt.
Klicken Sie auf OK, um das MILLIPLEX® MAP-Tool zu schließen oder auf Abbrechen, um zu Ihrer Auswahl zurückzukehren.
Wählen Sie konfigurierbare Panels & Premixed-Kits - ODER - Kits für die zelluläre Signaltransduktion & MAPmates™
Konfigurieren Sie Ihre MILLIPLEX® MAP-Kits und lassen sich den Preis anzeigen.
Konfigurierbare Panels & Premixed-Kits
Unser breites Angebot enthält Multiplex-Panels, für die Sie die Analyten auswählen können, die am besten für Ihre Anwendung geeignet sind. Unter einem separaten Register können Sie das Premixed-Cytokin-Format oder ein Singleplex-Kit wählen.
Kits für die zelluläre Signaltransduktion & MAPmates™
Wählen Sie gebrauchsfertige Kits zur Erforschung gesamter Signalwege oder Prozesse. Oder konfigurieren Sie Ihre eigenen Kits mit Singleplex MAPmates™.
Die folgenden MAPmates™ sollten nicht zusammen analysiert werden: -MAPmates™, die einen unterschiedlichen Assaypuffer erfordern. -Phosphospezifische und MAPmate™ Gesamtkombinationen wie Gesamt-GSK3β und Gesamt-GSK3β (Ser 9). -PanTyr und locusspezifische MAPmates™, z.B. Phospho-EGF-Rezeptor und Phospho-STAT1 (Tyr701). -Mehr als 1 Phospho-MAPmate™ für ein einziges Target (Akt, STAT3). -GAPDH und β-Tubulin können nicht mit Kits oder MAPmates™, die panTyr enthalten, analysiert werden.
.
Bestellnummer
Bestellinformationen
St./Pkg.
Liste
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Wählen Sie bitte Spezies, Panelart, Kit oder Probenart
Um Ihr MILLIPLEX® MAP-Kit zu konfigurieren, wählen Sie zunächst eine Spezies, eine Panelart und/oder ein Kit.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Spezies
Panelart
Gewähltes Kit
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
96-Well Plate
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
Weitere Reagenzien hinzufügen (MAPmates erfordern die Verwendung eines Puffer- und Detektionskits)
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Platzsparende Option Kunden, die mehrere Kits kaufen, können ihre Multiplex-Assaykomponenten in Kunststoffbeuteln anstelle von Packungen erhalten, um eine kompaktere Lagerung zu ermöglichen.
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Das Produkt wurde in Ihre Bestellung aufgenommen
Sie können nun ein weiteres Kit konfigurieren, ein Premixed-Kit wählen, zur Kasse gehen oder das Bestell-Tool schließen.
Anti-dimethyl-Histone H3 (Lys27) Antibody, clone 614M is a rabbit monoclonal antibody for detection of dimethyl-Histone H3 (Lys27) also known as H3K27me2, Histone H3 (di methyl K27) & has been validated in WB, PIA.
More>>Anti-dimethyl-Histone H3 (Lys27) Antibody, clone 614M is a rabbit monoclonal antibody for detection of dimethyl-Histone H3 (Lys27) also known as H3K27me2, Histone H3 (di methyl K27) & has been validated in WB, PIA. Less<<
SDB (Sicherheitsdatenblätter), Analysenzertifikate und Qualitätszertifikate, Dossiers, Broschüren und andere verfügbare Dokumente.
Histones are highly conserved proteins that serve as the structural scaffold for the organization of nuclear DNA into chromatin. The four core histones, H2A, H2B, H3, and H4, assemble into an octamer (2 molecules of each). Subsequently, 146 base pairs of DNA are wrapped around the octamer, forming a nucleosome. Histones are modified post-translationally by the actions of enzymes in both the nucleus and cytoplasm. These modifications regulate DNA transcription, repair, recombination, and replication. The most commonly studied modifications are acetylation, phosphorylation, methylation, and ubiquitination. These modifications can alter local chromatin architecture, or recruit trans-acting factors that recognize specific histone modifications (the "histone code" hypothesis). The modifications occur predominantly on the N-terminal and C-terminal tails that extend beyond the nucleosome core particle. Histone H3 is methylated at Lys27 by EZH2, and and overexpression of EZH2 has been associated with both breast and prostate cancers. Methylation of H3K27 is involved in X chroosome inactivation, imprinting, circadian rhythms, and stem cell maintenance. H3K27me2 is a marker of classical heterochromatin.
Anti-dimethyl-Histone H3 (Lys27) Antibody, clone 614M is a rabbit monoclonal antibody for detection of dimethyl-Histone H3 (Lys27) also known as H3K27me2, Histone H3 (di methyl K27) & has been validated in WB, PIA.
Key Applications
Western Blotting
Peptide Inhibition Assay
Application Notes
Western Blot Analysis: 1:1000-1:5000 dilutions of a previous lot of this clone detected dimethyl-Histone H3 in acid extracted proteins from HeLa cells, but did not detect unmethylated recombinant Histone H3 (Catalog # 14-494).
Peptide Inhibition: 0.5-2 µM of histone H3 peptides containing dimethyl-Lys27 abolished detection of histone H3 by anti-dimethyl-Histone H3 (Lys27), clone 614M (1:1000 dilution) in immunoblots of acid extracted proteins from HeLa cells.
Biological Information
Immunogen
Peptide containing the sequence (ARme2KSA) in which me2 corresponds to dimethyl lysine at residue 27 of human histone H3.
Clone
614M
Host
Rabbit
Specificity
Histone H3 dimethylated on Lys27. An unidentified doublet sometimes appears by Western blotting in some lysates at ~35 kDa.
Isotype
IgG
Species Reactivity
Vertebrates
Species Reactivity Note
Broad species cross-reactivity expected, based on sequence identity in most species.
Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. This structure consists of approximately 146 bp of DNA wrapped around a nucleosome, an octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless and encodes a member of the histone H3 family. Transcripts from this gene lack polyA tails; instead, they contain a palindromic termination element. This gene is found in a histone cluster on chromosome 1. This gene is one of four histone genes in the cluster that are duplicated; this record represents the telomeric copy. [provided by RefSeq]
FUNCTION:Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
SUBUNIT: The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA. During nucleosome assembly the chaperone ASF1A interacts with the histone H3-H4 heterodimer.
SUBCELLULAR LOCATION: Nucleus.
Developmental stage Expressed during S phase, then expression strongly decreases as cell division slows down during the process of differentiation.
PTM: Acetylation is generally linked to gene activation. Acetylation on Lys-10 impairs methylation at Arg-9. Acetylation on Lys-19 and Lys-24 favors methylation at Arg-18.
Citrullination at Arg-9 and/or Arg-18 by PADI4 impairs methylation and represses transcription.
Asymmetric dimethylation at Arg-18 by CARM1 is linked to gene activation. Symmetric dimethylation at Arg-9 by PRMT5 is linked to gene repression.
Methylation at Lys-5, Lys-37 and Lys-80 are linked to gene activation. Methylation at Lys-5 facilitates subsequent acetylation of H3 and H4. Methylation at Lys-80 is associated with DNA double-strand break (DSB) responses and is a specific target for TP53BP1. Methylation at Lys-10 and Lys-28 are linked to gene repression. Methylation at Lys-10 is a specific target for HP1 proteins (CBX1, CBX3 and CBX5) and prevents subsequent phosphorylation at Ser-11 and acetylation of H3 and H4. Methylation at Lys-5 and Lys-80 require preliminary monoubiquitination of H2B at 'Lys-120'. Methylation at Lys-10 and Lys-28 are enriched in inactive X chromosome chromatin.
Phosphorylated at Thr-4 by GSG2/haspin during prophase and dephosphorylated during anaphase. At centromeres, specifically phosphorylated at Thr-12 from prophase to early anaphase, probably by DAPK3. Phosphorylation at 'Ser-11' by AURKB is crucial for chromosome condensation and cell-cycle progression during mitosis and meiosis. In addition phosphorylation at 'Ser-11' by RPS6KA4 and RPS6KA5 is important during interphase because it enables the transcription of genes following external stimulation, like mitogens, stress, growth factors or UV irradiation and result in the activation of genes, such as c-fos and c-jun. Phosphorylation at Ser-11, which is linked to gene activation, prevents methylation at Lys-10 but facilitates acetylation of H3 and H4. Phosphorylation at Ser-11 by AURKB mediates the dissociation of HP1 proteins (CBX1, CBX3 and CBX5) from heterochromatin. Phosphorylation at 'Ser-11' is also an essential regulatory mechanism for neoplastic cell transformation. Phosphorylated at Ser-29 by MLTK isoform 1, RPS6KA5 or AURKB during mitosis or upon ultraviolet B irradiation.
Ubiquitinated by the CUL4-DDB-RBX1 complex in response to ultraviolet irradiation. This may weaken the interaction between histones and DNA and facilitate DNA accessibility to repair proteins.
SIMILARITY:Belongs to the histone H3 family.
Molecular Weight
17 kDa
Physicochemical Information
Dimensions
Materials Information
Toxicological Information
Safety Information according to GHS
Safety Information
Product Usage Statements
Quality Assurance
Routinely evaluated by western blot in acid extrated protein from mitotic HeLa cells.
Western Blot Analysis: 1:500-2000 dilutions of this lot detected dimethyl-Histone H3 in acid extracted proteins from HeLa cells.
Usage Statement
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
Storage and Shipping Information
Storage Conditions
1 year at -20°C from date of shipment Handling Recommendations: Upon receipt, and prior to removing the cap, centrifuge the vial and gently mix the solution. Aliquot into microcentrifuge tubes and store at -20°C. Avoid repeated freeze/ thaw cycles, which may damage IgG and affect product performance.
Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Silva, Jose, et al. Dev. Cell, 4: 481-95 (2003)
2003
Previous studies have implicated the Eed-Enx1 Polycomb group complex in the maintenance of imprinted X inactivation in the trophectoderm lineage in mouse. Here we show that recruitment of Eed-Enx1 to the inactive X chromosome (Xi) also occurs in random X inactivation in the embryo proper. Localization of Eed-Enx1 complexes to Xi occurs very early, at the onset of Xist expression, but then disappears as differentiation and development progress. This transient localization correlates with the presence of high levels of the complex in totipotent cells and during early differentiation stages. Functional analysis demonstrates that Eed-Enx1 is required to establish methylation of histone H3 at lysine 9 and/or lysine 27 on Xi and that this, in turn, is required to stabilize the Xi chromatin structure.
The p160 family of coactivators, SRC-1, GRIP1/TIF2, and p/CIP, mediate transcriptional activation by nuclear hormone receptors. Coactivator-associated arginine methyltransferase 1 (CARM1), a previously unidentified protein that binds to the carboxyl-terminal region of p160 coactivators, enhanced transcriptional activation by nuclear receptors, but only when GRIP1 or SRC-1a was coexpressed. Thus, CARM1 functions as a secondary coactivator through its association with p160 coactivators. CARM1 can methylate histone H3 in vitro, and a mutation in the putative S-adenosylmethionine binding domain of CARM1 substantially reduced both methyltransferase and coactivator activities. Thus, coactivator-mediated methylation of proteins in the transcription machinery may contribute to transcriptional regulation.
Millipore’s Histone H3 antibodies demonstrate specificity against histone H3. See below for acetyl-, methyl-, phospho- histone H3 Antibodies and Proteins, based on the expertise of Upstate & Chemicon. Weitere Informationen >>