Wenn Sie das Fenster schließen, wird Ihre Konfiguration nicht gespeichert, es sei denn, Sie haben Ihren Artikel in die Bestellung aufgenommen oder zu Ihren Favoriten hinzugefügt.
Klicken Sie auf OK, um das MILLIPLEX® MAP-Tool zu schließen oder auf Abbrechen, um zu Ihrer Auswahl zurückzukehren.
Wählen Sie konfigurierbare Panels & Premixed-Kits - ODER - Kits für die zelluläre Signaltransduktion & MAPmates™
Konfigurieren Sie Ihre MILLIPLEX® MAP-Kits und lassen sich den Preis anzeigen.
Konfigurierbare Panels & Premixed-Kits
Unser breites Angebot enthält Multiplex-Panels, für die Sie die Analyten auswählen können, die am besten für Ihre Anwendung geeignet sind. Unter einem separaten Register können Sie das Premixed-Cytokin-Format oder ein Singleplex-Kit wählen.
Kits für die zelluläre Signaltransduktion & MAPmates™
Wählen Sie gebrauchsfertige Kits zur Erforschung gesamter Signalwege oder Prozesse. Oder konfigurieren Sie Ihre eigenen Kits mit Singleplex MAPmates™.
Die folgenden MAPmates™ sollten nicht zusammen analysiert werden: -MAPmates™, die einen unterschiedlichen Assaypuffer erfordern. -Phosphospezifische und MAPmate™ Gesamtkombinationen wie Gesamt-GSK3β und Gesamt-GSK3β (Ser 9). -PanTyr und locusspezifische MAPmates™, z.B. Phospho-EGF-Rezeptor und Phospho-STAT1 (Tyr701). -Mehr als 1 Phospho-MAPmate™ für ein einziges Target (Akt, STAT3). -GAPDH und β-Tubulin können nicht mit Kits oder MAPmates™, die panTyr enthalten, analysiert werden.
.
Bestellnummer
Bestellinformationen
St./Pkg.
Liste
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Wählen Sie bitte Spezies, Panelart, Kit oder Probenart
Um Ihr MILLIPLEX® MAP-Kit zu konfigurieren, wählen Sie zunächst eine Spezies, eine Panelart und/oder ein Kit.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Spezies
Panelart
Gewähltes Kit
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
96-Well Plate
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
Weitere Reagenzien hinzufügen (MAPmates erfordern die Verwendung eines Puffer- und Detektionskits)
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Platzsparende Option Kunden, die mehrere Kits kaufen, können ihre Multiplex-Assaykomponenten in Kunststoffbeuteln anstelle von Packungen erhalten, um eine kompaktere Lagerung zu ermöglichen.
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Das Produkt wurde in Ihre Bestellung aufgenommen
Sie können nun ein weiteres Kit konfigurieren, ein Premixed-Kit wählen, zur Kasse gehen oder das Bestell-Tool schließen.
Anti-VSV Nucleoprotein, clone 10G4, Cat. No. MABF2348,is a mouse monoclonal antibody that detects VSV-Nucleoprotein and is tested for use in Immunocytochemistry, Immunoprecipitation, and Western Blotting.
More>>Anti-VSV Nucleoprotein, clone 10G4, Cat. No. MABF2348,is a mouse monoclonal antibody that detects VSV-Nucleoprotein and is tested for use in Immunocytochemistry, Immunoprecipitation, and Western Blotting. Less<<
Empfohlene Produkte
Übersicht
Replacement Information
Description
Catalogue Number
MABF2348-25UG
Description
Anti-VSV Nucleoprotein Antibody, clone 10G4
Alternate Names
Nucleoprotein Vesicular stomatitis virus
VSIV Nucleoprotein
Background Information
Nucleoprotein from Vesicular stomatitis virus (VSV) (UniProt: P03521; also known as NP, Nucleocapsid protein, Protein N) is encoded by the N gene (Gene ID: 1489831) in Vesicular stomatitis Indiana virus. VSV belongs to the Rhabdoviridae family and two distinct serotypes of this virus have been described the New Jersey and Indiana type. It is an enveloped, negative-sense RNA virus that mainly infects a variety domestic animals and causes vesiculation, ulceration, and erosion of the oral and nasal mucosa and epithelial surface of the tongue. The genomic structure of this virus is a single strand of negative-sense RNA that is composed of five genes known as N, P, M, G, and L that represent the nucleocapsid protein, phosphoprotein, matrix protein, glycoprotein, and the large protein, which is a component of the viral RNA polymerase. The viral nucleoprotein is shown to homomultimerize to form the nucleocapsid. The nucleoprotein encapsidates the genome in a ratio of one N per nine ribonucleotides and protects it from the action of nucleases. N in nucleocapsid also binds the P protein and thereby positions the polymerase on the template. The encapsidated genomic RNA serves as template for transcription and replication. The viral replication is shown to depend on the intracellular concentration of free N (also known as N0) and the interaction of N0 with the P protein prevents the uncontrolled aggregation of N0. (Ref.: Whitt, MA. (2010). J. Virol. Methods. 169(2); 365-374; Davis, NL., et al. (1986). J. Virol. 59(3); 751-754).
References
Product Information
Format
Purified
Presentation
Purified mouse monoclonal antibody IgG2a in buffer containing 0.1 M Tris-Glycine (pH 7.4), 150 mM NaCl with 0.05% sodium azide.
Applications
Application
Anti-VSV Nucleoprotein, clone 10G4, Cat. No. MABF2348,is a mouse monoclonal antibody that detects VSV-Nucleoprotein and is tested for use in Immunocytochemistry, Immunoprecipitation, and Western Blotting.
Key Applications
Immunocytochemistry
Immunoprecipitation
Western Blotting
Application Notes
Immunocytochemistry Analysis: A representative lot detected VSV-Nucleoprotein in Immunocytochmistry applications (Whitt, M.A., et. al. (2010). J Virol Methods. 169(2):365-74).
Western Blotting Analysis: A representative lot detected VSV-Nucleoprotein in Western Blotting applications (Malikov, V., et. al. (2015). Nat Commun. 6:6660; Pattnaik, A.K., et. al. (1991). Proc Natl Acad Sci USA. 88(4):1379-83).
Western Blotting Analysis: A 1:1,000 dilution from a represnetative lot detected VSV-Nucleoprotein in BHK cell lysates infected with VSV-Orsay (Courtesy of helby Puckett (Lyles Lab), Wake Forest School of Medicine, North Carolina USA).
Immunoprecipitation Analysis: A representative lot immunoprecipitated VSV-Nucleoprotein in Immunoprecipitation applications (Pattnaik, A.K., et. al. (1991). Proc Natl Acad Sci USA. 88(4):1379-83).
Biological Information
Immunogen
Vesicular stomatitis virus, Indiana serotype.
Clone
10G4
Concentration
Please refer to lot specific datasheet.
Host
Mouse
Specificity
Clone 10G4 is a mouse monoclonal antibody that detects Vesicular stomatitis Indiana virus nucleoprotein in virus infected cells.
Isotype testing: Identity Confirmation by Isotyping Test.
Isotyping Analysis: The identity of this monoclonal antibody is confirmed by isotyping test to be mouse IgG2a.
Usage Statement
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus. Malikov, V; da Silva, ES; Jovasevic, V; Bennett, G; de Souza Aranha Vieira, DA; Schulte, B; Diaz-Griffero, F; Walsh, D; Naghavi, MH Nat Commun
6
6660
2015
Intracellular transport of cargos, including many viruses, involves directed movement on microtubules mediated by motor proteins. Although a number of viruses bind motors of opposing directionality, how they associate with and control these motors to accomplish directed movement remains poorly understood. Here we show that human immunodeficiency virus type 1 (HIV-1) associates with the kinesin-1 adaptor protein, Fasiculation and Elongation Factor zeta 1 (FEZ1). RNAi-mediated FEZ1 depletion blocks early infection, with virus particles exhibiting bi-directional motility but no net movement to the nucleus. Furthermore, both dynein and kinesin-1 motors are required for HIV-1 trafficking to the nucleus. Finally, the ability of exogenously expressed FEZ1 to promote early HIV-1 infection requires binding to kinesin-1. Our findings demonstrate that opposing motors both contribute to early HIV-1 movement and identify the kinesin-1 adaptor, FEZ1 as a capsid-associated host regulator of this process usurped by HIV-1 to accomplish net inward movement towards the nucleus.
Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines. Whitt, MA J Virol Methods
169
365-74
2009
Vesicular stomatitis virus (VSV) is a prototypic enveloped animal virus that has been used extensively to study virus entry, replication and assembly due to its broad host range and robust replication properties in a wide variety of mammalian and insect cells. Studies on VSV assembly led to the creation of a recombinant VSV in which the glycoprotein (G) gene was deleted. This recombinant (rVSV-ΔG) has been used to produce VSV pseudotypes containing the envelope glycoproteins of heterologous viruses, including viruses that require high-level biocontainment; however, because the infectivity of rVSV-ΔG pseudotypes is restricted to a single round of replication the analysis can be performed using biosafety level 2 (BSL-2) containment. As such, rVSV-ΔG pseudotypes have facilitated the analysis of virus entry for numerous viral pathogens without the need for specialized containment facilities. The pseudotypes also provide a robust platform to screen libraries for entry inhibitors and to evaluate the neutralizing antibody responses following vaccination. This manuscript describes methods to produce and titer rVSV-ΔG pseudotypes. Procedures to generate rVSV-ΔG stocks and to quantify virus infectivity are also described. These protocols should allow any laboratory knowledgeable in general virological and cell culture techniques to produce successfully replication-restricted rVSV-ΔG pseudotypes for subsequent analysis.
Cells that express all five proteins of vesicular stomatitis virus from cloned cDNAs support replication, assembly, and budding of defective interfering particles. Pattnaik, AK; Wertz, GW Proc Natl Acad Sci U S A
88
1379-83
1991
An alternative approach to structure-function analysis of vesicular stomatitis virus (VSV) gene products and their interactions with one another during each phase of the viral life cycle is described. We showed previously by using the vaccinia virus-T7 RNA polymerase expression system that when cells expressing the nucleocapsid protein (N), the phosphoprotein (NS), and the large polymerase protein (L) of VSV were superinfected with defective interfering (DI) particles, rapid and efficient replication and amplification of (DI) particle RNA occurred. Here, we demonstrate that all five VSV proteins can be expressed simultaneously when cells are contransfected with plasmids containing the matrix protein (M) gene and the glycoprotein (G) gene of VSV in addition to plasmids containing the genes for the N, NS, and L proteins. When cells coexpressing all five VSV proteins were superinfected with DI particles, which because of their defectiveness are unable to express any viral proteins or to replicate, DI particle replication, assembly, and budding were observed and infectious DI particles were released into the culture fluids. Omission of either the M or G protein expression resulted in no DI particle budding. The vector-supported DI particles were similar in size and morphology to the authentic DI particles generated from cells coinfected with DI particles and helper VSV and their infectivity could be blocked by anti-VSV or anti-G antiserum. The successful replication, assembly, and budding of DI particles from cells expressing all five VSV proteins from cloned cDNAs provide a powerful approach for detailed structure-function analysis of the VSV gene products in each step of the replicative cycle of the virus.