RFX2 Is a Major Transcriptional Regulator of Spermiogenesis. Kistler, WS; Baas, D; Lemeille, S; Paschaki, M; Seguin-Estevez, Q; Barras, E; Ma, W; Duteyrat, JL; Morlé, L; Durand, B; Reith, W PLoS genetics
11
e1005368
2015
Abstract anzeigen
Spermatogenesis consists broadly of three phases: proliferation of diploid germ cells, meiosis, and finally extensive differentiation of the haploid cells into effective delivery vehicles for the paternal genome. Despite detailed characterization of many haploid developmental steps leading to sperm, only fragmentary information exists on the control of gene expression underlying these processes. Here we report that the RFX2 transcription factor is a master regulator of genes required for the haploid phase. A targeted mutation of Rfx2 was created in mice. Rfx2-/- mice are perfectly viable but show complete male sterility. Spermatogenesis appears to progress unperturbed through meiosis. However, haploid cells undergo a complete arrest in spermatid development just prior to spermatid elongation. Arrested cells show altered Golgi apparatus organization, leading to a deficit in the generation of a spreading acrosomal cap from proacrosomal vesicles. Arrested cells ultimately merge to form giant multinucleated cells released to the epididymis. Spermatids also completely fail to form the flagellar axoneme. RNA-Seq analysis and ChIP-Seq analysis identified 139 genes directly controlled by RFX2 during spermiogenesis. Gene ontology analysis revealed that genes required for cilium function are specifically enriched in down- and upregulated genes showing that RFX2 allows precise temporal expression of ciliary genes. Several genes required for cell adhesion and cytoskeleton remodeling are also downregulated. Comparison of RFX2-regulated genes with those controlled by other major transcriptional regulators of spermiogenesis showed that each controls independent gene sets. Altogether, these observations show that RFX2 plays a major and specific function in spermiogenesis. | | | 26162102
|
Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Poitelon, Y; Bogni, S; Matafora, V; Della-Flora Nunes, G; Hurley, E; Ghidinelli, M; Katzenellenbogen, BS; Taveggia, C; Silvestri, N; Bachi, A; Sannino, A; Wrabetz, L; Feltri, ML Nature communications
6
8303
2015
Abstract anzeigen
Cell-cell interactions promote juxtacrine signals in specific subcellular domains, which are difficult to capture in the complexity of the nervous system. For example, contact between axons and Schwann cells triggers signals required for radial sorting and myelination. Failure in this interaction causes dysmyelination and axonal degeneration. Despite its importance, few molecules at the axo-glial surface are known. To identify novel molecules in axo-glial interactions, we modified the 'pseudopodia' sub-fractionation system and isolated the projections that glia extend when they receive juxtacrine signals from axons. By proteomics we identified the signalling networks present at the glial-leading edge, and novel proteins, including members of the Prohibitin family. Glial-specific deletion of Prohibitin-2 in mice impairs axo-glial interactions and myelination. We thus validate a novel method to model morphogenesis and juxtacrine signalling, provide insights into the molecular organization of the axo-glial contact, and identify a novel class of molecules in myelination. | Immunohistochemistry | | 26383514
|
Wdr1-mediated cell shape dynamics and cortical tension are essential for epidermal planar cell polarity. Luxenburg, C; Heller, E; Pasolli, HA; Chai, S; Nikolova, M; Stokes, N; Fuchs, E Nature cell biology
17
592-604
2015
Abstract anzeigen
During mouse development, core planar cell polarity (PCP) proteins become polarized in the epidermal plane to guide angling/morphogenesis of hair follicles. How PCP is established is poorly understood. Here, we identify a key role for Wdr1 (also known as Aip1), an F-actin-binding protein that enhances cofilin/destrin-mediated F-actin disassembly. We show that cofilin and destrin function redundantly in developing epidermis, but their combined depletion perturbs cell adhesion, cytokinesis, apicobasal polarity and PCP. Although Wdr1 depletion accentuates single-loss-of-cofilin/destrin phenotypes, alone it resembles core PCP mutations. Seeking a mechanism, we find that Wdr1 and cofilin/destrin-mediated actomyosin remodelling are essential for generating or maintaining cortical tension within the developing epidermal sheet and driving the cell shape and planar orientation changes that accompany establishment of PCP in mammalian epidermis. Our findings suggest intriguing evolutionary parallels but mechanistic modifications to the distal wing hinge-mediated mechanical forces that drive cell shape change and orient PCP in the Drosophila wing disc. | | | 25915128
|
Type VII collagen regulates expression of OATP1B3, promotes front-to-rear polarity and increases structural organisation in 3D spheroid cultures of RDEB tumour keratinocytes. Dayal, JH; Cole, CL; Pourreyron, C; Watt, SA; Lim, YZ; Salas-Alanis, JC; Murrell, DF; McGrath, JA; Stieger, B; Jahoda, C; Leigh, IM; South, AP Journal of cell science
127
740-51
2014
Abstract anzeigen
Type VII collagen is the main component of anchoring fibrils, structures that are integral to basement membrane homeostasis in skin. Mutations in the gene encoding type VII collagen COL7A1 cause recessive dystrophic epidermolysis bullosa (RDEB) an inherited skin blistering condition complicated by frequent aggressive cutaneous squamous cell carcinoma (cSCC). OATP1B3, which is encoded by the gene SLCO1B3, is a member of the OATP (organic anion transporting polypeptide) superfamily responsible for transporting a wide range of endogenous and xenobiotic compounds. OATP1B3 expression is limited to the liver in healthy tissues, but is frequently detected in multiple cancer types and is reported to be associated with differing clinical outcome. The mechanism and functional significance of tumour-specific expression of OATP1B3 has yet to be determined. Here, we identify SLCO1B3 expression in tumour keratinocytes isolated from RDEB and UV-induced cSCC and demonstrate that SLCO1B3 expression and promoter activity are modulated by type VII collagen. We show that reduction of SLCO1B3 expression upon expression of full-length type VII collagen in RDEB cSCC coincides with acquisition of front-to-rear polarity and increased organisation of 3D spheroid cultures. In addition, we show that type VII collagen positively regulates the abundance of markers implicated in cellular polarity, namely ELMO2, PAR3, E-cadherin, B-catenin, ITGA6 and Ln332. | | | 24357722
|
Dual function of Yap in the regulation of lens progenitor cells and cellular polarity. Song, JY; Park, R; Kim, JY; Hughes, L; Lu, L; Kim, S; Johnson, RL; Cho, SH Developmental biology
386
281-90
2014
Abstract anzeigen
Hippo-Yap signaling has been implicated in organ size determination via its regulation of cell proliferation, growth and apoptosis (Pan, 2007). The vertebrate lens comprises only two major cell types, lens progenitors and differentiated fiber cells, thereby providing a relatively simple system for studying size-controlling mechanisms. In order to investigate the role of Hippo-Yap signaling in lens size regulation, we conditionally ablated Yap in the developing mouse lens. Lens progenitor-specific deletion of Yap led to near obliteration of the lens primarily due to hypocellularity in the lens epithelium (LE) and accompanying lens fiber (LF) defects. A significantly reduced LE progenitor pool resulted mainly from failed self-renewal and increased apoptosis. Additionally, Yap-deficient lens progenitor cells precociously exited the cell cycle and expressed the LF marker, β-Crystallin. The mutant progenitor cells also exhibited multiple cellular and subcellular alterations including cell and nuclear shape change, organellar polarity disruption, and disorganized apical polarity complex and junction proteins such as Crumbs, Pals1, Par3 and ZO-1. Yap-deficient LF cells failed to anchor to the overlying LE layer, impairing their normal elongation and packaging. Furthermore, our localization study results suggest that, in the developing LE, Yap participates in the cell context-dependent transition from the proliferative to differentiation-competent state by integrating cell density information. Taken together, our results shed new light on Yap's indispensable and novel organizing role in mammalian organ size control by coordinating multiple events including cell proliferation, differentiation, and polarity. | | | 24384391
|
Developmental stratification of the mammary epithelium occurs through symmetry-breaking vertical divisions of apically positioned luminal cells. Huebner, RJ; Lechler, T; Ewald, AJ Development (Cambridge, England)
141
1085-94
2014
Abstract anzeigen
Mammary ducts are elongated during development by stratified epithelial structures, known as terminal end buds (TEBs). TEBs exhibit reduced apicobasal polarity and extensive proliferation. A major unanswered question concerns the mechanism by which the simple ductal epithelium stratifies during TEB formation. We sought to elucidate this mechanism using real-time imaging of growth factor-induced stratification in 3D cultures of mouse primary epithelial organoids. We hypothesized that stratification could result from vertical divisions in either the apically positioned luminal epithelial cells or the basally positioned myoepithelial cells. Stratification initiated exclusively from vertical apical cell divisions, both in 3D culture and in vivo. During vertical apical divisions, only the mother cell retained tight junctions and segregated apical membranes. Vertical daughter cells initiated an unpolarized cell population located between the luminal and myoepithelial cells, similar to the unpolarized body cells in the TEB. As stratification and loss of apicobasal polarity are early hallmarks of cancer, we next determined the cellular mechanism of oncogenic stratification. Expression of activated ERBB2 induced neoplastic stratification through analogous vertical divisions of apically positioned luminal epithelial cells. However, ERBB2-induced stratification was accompanied by tissue overgrowth and acute loss of both tight junctions and apical polarity. Expression of phosphomimetic MEK (MEK1DD), a major ERBB2 effector, also induced stratification through vertical apical cell divisions. However, MEK1DD-expressing organoids exhibited normal levels of growth and retained apicobasal polarity. We conclude that both normal and neoplastic stratification are accomplished through receptor tyrosine kinase signaling dependent vertical cell divisions within the luminal epithelial cell layer. | | | 24550116
|
Par3-mInsc and Gαi3 cooperate to promote oriented epidermal cell divisions through LGN. Williams, SE; Ratliff, LA; Postiglione, MP; Knoblich, JA; Fuchs, E Nature cell biology
16
758-69
2014
Abstract anzeigen
Asymmetric cell divisions allow stem cells to balance proliferation and differentiation. During embryogenesis, murine epidermis expands rapidly from a single layer of unspecified basal layer progenitors to a stratified, differentiated epithelium. Morphogenesis involves perpendicular (asymmetric) divisions and the spindle orientation protein LGN, but little is known about how the apical localization of LGN is regulated. Here, we combine conventional genetics and lentiviral-mediated in vivo RNAi to explore the functions of the LGN-interacting proteins Par3, mInsc and Gαi3. Whereas loss of each gene alone leads to randomized division angles, combined loss of Gnai3 and mInsc causes a phenotype of mostly planar divisions, akin to loss of LGN. These findings lend experimental support for the hitherto untested model that Par3-mInsc and Gαi3 act cooperatively to polarize LGN and promote perpendicular divisions. Finally, we uncover a developmental switch between delamination-driven early stratification and spindle-orientation-dependent differentiation that occurs around E15, revealing a two-step mechanism underlying epidermal maturation. | | | 25016959
|
Atypical protein kinase C and Par3 are required for proteoglycan-induced axon growth inhibition. Lee, SI; Zhang, W; Ravi, M; Weschenfelder, M; Bastmeyer, M; Levine, JM The Journal of neuroscience : the official journal of the Society for Neuroscience
33
2541-54
2013
Abstract anzeigen
When the CNS is injured, damaged axons do not regenerate. This failure is due in part to the growth-inhibitory environment that forms at the injury site. Myelin-associated molecules, repulsive axon guidance molecules, and extracellular matrix molecules including chondroitin sulfate proteoglycans (CSPGs) found within the glial scar inhibit axon regeneration but the intracellular signaling mechanisms triggered by these diverse molecules remain largely unknown. Here we provide biochemical and functional evidence that atypical protein kinase C (PKCζ) and polarity (Par) complex proteins mediate axon growth inhibition. Treatment of postnatal rat neurons in vitro with the NG2 CSPG, a major component of the glial scar, activates PKCζ, and this activation is both necessary and sufficient to inhibit axonal growth. NG2 treatment also activates Cdc42, increases the association of Par6 with PKCζ, and leads to a Par3-dependent activation of Rac1. Transfection of neurons with kinase-dead forms of PKCζ, dominant-negative forms of Cdc42, or mutant forms of Par6 that do not bind to Cdc42 prevent NG2-induced growth inhibition. Similarly, transfection with either a phosphomutant Par3 (S824A) or dominant-negative Rac1 prevent inhibition, whereas expression of constitutively active Rac1 inhibits axon growth on control surfaces. These results suggest a model in which NG2 binding to neurons activates PKCζ and modifies Par complex function. They also identify the Par complex as a novel therapeutic target for promoting axon regeneration after CNS injury. | | | 23392682
|
The adhesion-GPCR BAI1 regulates synaptogenesis by controlling the recruitment of the Par3/Tiam1 polarity complex to synaptic sites. Duman, JG; Tzeng, CP; Tu, YK; Munjal, T; Schwechter, B; Ho, TS; Tolias, KF The Journal of neuroscience : the official journal of the Society for Neuroscience
33
6964-78
2013
Abstract anzeigen
Excitatory synapses are polarized structures that primarily reside on dendritic spines in the brain. The small GTPase Rac1 regulates the development and plasticity of synapses and spines by modulating actin dynamics. By restricting the Rac1-guanine nucleotide exchange factor Tiam1 to spines, the polarity protein Par3 promotes synapse development by spatially controlling Rac1 activation. However, the mechanism for recruiting Par3 to spines is unknown. Here, we identify brain-specific angiogenesis inhibitor 1 (BAI1) as a synaptic adhesion GPCR that is required for spinogenesis and synaptogenesis in mice and rats. We show that BAI1 interacts with Par3/Tiam1 and recruits these proteins to synaptic sites. BAI1 knockdown results in Par3/Tiam1 mislocalization and loss of activated Rac1 and filamentous actin from spines. Interestingly, BAI1 also mediates Rac-dependent engulfment in professional phagocytes through its interaction with a different Rac1-guanine nucleotide exchange factor module, ELMO/DOCK180. However, this interaction is dispensable for BAI1's role in synapse development because a BAI1 mutant that cannot interact with ELMO/DOCK180 rescues spine defects in BAI1-knockdown neurons, whereas a mutant that cannot interact with Par3/Tiam1 rescues neither spine defects nor Par3 localization. Further, overexpression of Tiam1 rescues BAI1 knockdown spine phenotypes. These results indicate that BAI1 plays an important role in synaptogenesis that is mechanistically distinct from its role in phagocytosis. Furthermore, our results provide the first example of a cell surface receptor that targets members of the PAR polarity complex to synapses. | | | 23595754
|
Factor inhibiting HIF-1 (FIH-1) modulates protein interactions of apoptosis-stimulating p53 binding protein 2 (ASPP2). Janke, K; Brockmeier, U; Kuhlmann, K; Eisenacher, M; Nolde, J; Meyer, HE; Mairbäurl, H; Metzen, E J Cell Sci
126
2629-40
2013
Abstract anzeigen
The asparaginyl hydroxylase factor inhibiting HIF-1 (FIH-1) is an important suppressor of hypoxia-inducible factor (HIF) activity. In addition to HIF-α, FIH-1 was previously shown to hydroxylate other substrates within a highly conserved protein interaction domain, termed the ankyrin repeat domain (ARD). However, to date, the biological role of FIH-1-dependent ARD hydroxylation could not be clarified for any ARD-containing substrate. The apoptosis-stimulating p53-binding protein (ASPP) family members were initially identified as highly conserved regulators of the tumour suppressor p53. In addition, ASPP2 was shown to be important for the regulation of cell polarity through interaction with partitioning defective 3 homolog (Par-3). Using mass spectrometry we identified ASPP2 as a new substrate of FIH-1 but inhibitory ASPP (iASPP) was not hydroxylated. We demonstrated that ASPP2 asparagine 986 (N986) is a single hydroxylation site located within the ARD. ASPP2 protein levels and stability were not affected by depletion or inhibition of FIH-1. However, FIH-1 depletion did lead to impaired binding of Par-3 to ASPP2 while the interaction between ASPP2 and p53, apoptosis and proliferation of the cancer cells were not affected. Depletion of FIH-1 and incubation with the hydroxylase inhibitor dimethyloxalylglycine (DMOG) resulted in relocation of ASPP2 from cell-cell contacts to the cytosol. Our data thus demonstrate that protein interactions of ARD-containing substrates can be modified by FIH-1-dependent hydroxylation. The large cellular pool of ARD-containing proteins suggests that FIH-1 can affect a broad range of cellular functions and signalling pathways under certain conditions, for example, in response to severe hypoxia. | | | 23606740
|