Simvastatin treatment enhances NMDAR-mediated synaptic transmission by upregulating the surface distribution of the GluN2B subunit. Parent, MA; Hottman, DA; Cheng, S; Zhang, W; McMahon, LL; Yuan, LL; Li, L Cellular and molecular neurobiology
34
693-705
2014
Abstract anzeigen
The ramifications of statins on plasma cholesterol and coronary heart disease have been well documented. However, there is increasing evidence that inhibition of the mevalonate pathway may provide independent neuroprotective and procognitive pleiotropic effects, most likely via inhibition of isoprenoids, mainly farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). FPP and GGPP are the major donors of prenyl groups for protein prenylation. Modulation of isoprenoid availability impacts a slew of cellular processes including synaptic plasticity in the hippocampus. Our previous work has demonstrated that simvastatin (SV) administration improves hippocampus-dependent spatial memory, rescuing memory deficits in a mouse model of Alzheimer's disease. Treatment of hippocampal slices with SV enhances long-term potentiation (LTP), and this effect is dependent on the activation of Akt (protein kinase B). Further studies showed that SV-induced enhancement of hippocampal LTP is driven by depletion of FPP and inhibition of farnesylation. In the present study, we report the functional consequences of exposure to SV at cellular/synaptic and molecular levels. While application of SV has no effect on intrinsic membrane properties of CA1 pyramidal neurons, including hyperpolarization-activated cyclic-nucleotide channel-mediated sag potentials, the afterhyperpolarization (AHP), and excitability, SV application potentiates the N-methyl D-aspartate receptor (NMDAR)-mediated contribution to synaptic transmission. In mouse hippocampal slices and human neuronal cells, SV treatment increases the surface distribution of the GluN2B subunit of the NMDAR without affecting cellular cholesterol content. We conclude that SV-induced enhancement of synaptic plasticity in the hippocampus is likely mediated by augmentation of synaptic NMDAR components that are largely responsible for driving synaptic plasticity in the CA1 region. | | | 24687455
|
Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Gascon, E; Lynch, K; Ruan, H; Almeida, S; Verheyden, JM; Seeley, WW; Dickson, DW; Petrucelli, L; Sun, D; Jiao, J; Zhou, H; Jakovcevski, M; Akbarian, S; Yao, WD; Gao, FB Nature medicine
20
1444-51
2014
Abstract anzeigen
Neurodegenerative diseases, such as frontotemporal dementia (FTD), are often associated with behavioral deficits, but the underlying anatomical and molecular causes remain poorly understood. Here we show that forebrain-specific expression of FTD-associated mutant CHMP2B in mice causes several age-dependent neurodegenerative phenotypes, including social behavioral impairments. The social deficits were accompanied by a change in AMPA receptor (AMPAR) composition, leading to an imbalance between Ca(2+)-permeable and Ca(2+)-impermeable AMPARs. Expression of most AMPAR subunits was regulated by the brain-enriched microRNA miR-124, whose abundance was markedly decreased in the superficial layers of the cerebral cortex of mice expressing the mutant CHMP2B. We found similar changes in miR-124 and AMPAR levels in the frontal cortex and induced pluripotent stem cell-derived neurons from subjects with behavioral variant FTD. Moreover, ectopic miR-124 expression in the medial prefrontal cortex of mutant mice decreased AMPAR levels and partially rescued behavioral deficits. Knockdown of the AMPAR subunit Gria2 also alleviated social impairments. Our results identify a previously undescribed mechanism involving miR-124 and AMPARs in regulating social behavior in FTD and suggest a potential therapeutic avenue. | | | 25401692
|
MET receptor tyrosine kinase controls dendritic complexity, spine morphogenesis, and glutamatergic synapse maturation in the hippocampus. Qiu, S; Lu, Z; Levitt, P The Journal of neuroscience : the official journal of the Society for Neuroscience
34
16166-79
2014
Abstract anzeigen
The MET receptor tyrosine kinase (RTK), implicated in risk for autism spectrum disorder (ASD) and in functional and structural circuit integrity in humans, is a temporally and spatially regulated receptor enriched in dorsal pallial-derived structures during mouse forebrain development. Here we report that loss or gain of function of MET in vitro or in vivo leads to changes, opposite in nature, in dendritic complexity, spine morphogenesis, and the timing of glutamatergic synapse maturation onto hippocampus CA1 neurons. Consistent with the morphological and biochemical changes, deletion of Met in mutant mice results in precocious maturation of excitatory synapse, as indicated by a reduction of the proportion of silent synapses, a faster GluN2A subunit switch, and an enhanced acquisition of AMPA receptors at synaptic sites. Thus, MET-mediated signaling appears to serve as a mechanism for controlling the timing of neuronal growth and functional maturation. These studies suggest that mistimed maturation of glutamatergic synapses leads to the aberrant neural circuits that may be associated with ASD risk. | Immunohistochemistry | | 25471559
|
Activation of N-methyl-d-aspartate receptor downregulates inflammasome activity and liver inflammation via a β-arrestin-2 pathway. Farooq, A; Hoque, R; Ouyang, X; Farooq, A; Ghani, A; Ahsan, K; Guerra, M; Mehal, WZ American journal of physiology. Gastrointestinal and liver physiology
307
G732-40
2014
Abstract anzeigen
Activation of the cytosolic inflammasome machinery is responsible for acute and chronic liver inflammation, but little is known about its regulation. The N-methyl-d-aspartate (NMDA) receptor families are heterotetrameric ligand-gated ion channels that are activated by a range of metabolites, including aspartate, glutamate, and polyunsaturated fatty acids. In the brain NMDA receptors are present on neuronal and nonneuronal cells and regulate a diverse range of functions. We tested the role of the NMDA receptor and aspartate in inflammasome regulation in vitro and in models of acute hepatitis and pancreatitis. We demonstrate that the NMDA receptor is present on Kupffer cells, and their activation on primary mouse and human cells limits inflammasome activation by downregulating NOD-like receptor family, pyrin domain containing 3 and procaspase-1. The NMDA receptor pathway is active in vivo, limits injury in acute hepatitis, and can be therapeutically further activated by aspartate providing protection in acute inflammatory liver injury. Downregulation of inflammasome activation by NMDA occurs via a β-arrestin-2 NF-kβ and JNK pathway and not via Ca(2+) mobilization. We have identified the NMDA receptor as a regulator of inflammasome activity in vitro and in vivo. This has identified a new area of immune regulation associated by metabolites that may be relevant in a diverse range of conditions, including nonalcoholic steatohepatitis and total parenteral nutrition-induced immune suppression. | Immunoprecipitation | | 25104498
|
Distinct roles for μ-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. Wang, Y; Briz, V; Chishti, A; Bi, X; Baudry, M The Journal of neuroscience : the official journal of the Society for Neuroscience
33
18880-92
2013
Abstract anzeigen
Prolonged calpain activation is widely recognized as a key component of neurodegeneration in a variety of pathological conditions. Numerous reports have also indicated that synaptic activation of NMDA receptors (NMDARs) provides neuroprotection against a variety of insults. Here, we report the paradoxical finding that such neuroprotection involves calpain activation. NMDAR activation in cultured rat cortical neurons was neuroprotective against starvation and oxidative stress-induced damage. It also resulted in the degradation of two splice variants of PH domain and Leucine-rich repeat Protein Phosphatase 1 (PHLPP1), PHLPP1α and PHLPP1β, which inhibit the Akt and ERK1/2 pathways. Synaptic NMDAR-induced neuroprotection and PHLPP1 degradation were blocked by calpain inhibition. Lentiviral knockdown of PHLPP1 mimicked the neuroprotective effects of synaptic NMDAR activation and occluded the effects of calpain inhibition on neuroprotection. In contrast to synaptic NMDAR activation, extrasynaptic NMDAR activation had no effect on PHLPP1 and the Akt and ERK1/2 pathways, but resulted in calpain-mediated degradation of striatal-enriched protein tyrosine phosphatase (STEP) and neuronal death. Using μ-calpain- and m-calpain-selective inhibitors and μ-calpain and m-calpain siRNAs, we found that μ-calpain-dependent PHLPP1 cleavage was involved in synaptic NMDAR-mediated neuroprotection, while m-calpain-mediated STEP degradation was associated with extrasynaptic NMDAR-induced neurotoxicity. Furthermore, m-calpain inhibition reduced while μ-calpain knockout exacerbated NMDA-induced neurotoxicity in acute mouse hippocampal slices. Thus, synaptic NMDAR-coupled μ-calpain activation is neuroprotective, while extrasynaptic NMDAR-coupled m-calpain activation is neurodegenerative. These results help to reconcile a number of contradictory results in the literature and have critical implications for the understanding and potential treatment of neurodegenerative diseases. | | | 24285894
|
GluN2B in corticostriatal circuits governs choice learning and choice shifting. Brigman, JL; Daut, RA; Wright, T; Gunduz-Cinar, O; Graybeal, C; Davis, MI; Jiang, Z; Saksida, LM; Jinde, S; Pease, M; Bussey, TJ; Lovinger, DM; Nakazawa, K; Holmes, A Nature neuroscience
16
1101-10
2013
Abstract anzeigen
A choice that reliably produces a preferred outcome can be automated to liberate cognitive resources for other tasks. Should an outcome become less desirable, behavior must adapt in parallel or it becomes perseverative. Corticostriatal systems are known to mediate choice learning and flexibility, but the molecular mechanisms of these processes are not well understood. We integrated mouse behavioral, immunocytochemical, in vivo electrophysiological, genetic and pharmacological approaches to study choice. We found that the dorsal striatum (DS) was increasingly activated with choice learning, whereas reversal of learned choice engaged prefrontal regions. In vivo, DS neurons showed activity associated with reward anticipation and receipt that emerged with learning and relearning. Corticostriatal or striatal deletion of Grin2b (encoding the NMDA-type glutamate receptor subunit GluN2B) or DS-restricted GluN2B antagonism impaired choice learning, whereas cortical Grin2b deletion or OFC GluN2B antagonism impaired shifting. Our convergent data demonstrate how corticostriatal GluN2B circuits govern the ability to learn and shift choice behavior. | Western Blotting | | 23831965
|
Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models. Marco, S; Giralt, A; Petrovic, MM; Pouladi, MA; Martínez-Turrillas, R; Martínez-Hernández, J; Kaltenbach, LS; Torres-Peraza, J; Graham, RK; Watanabe, M; Luján, R; Nakanishi, N; Lipton, SA; Lo, DC; Hayden, MR; Alberch, J; Wesseling, JF; Pérez-Otaño, I Nature medicine
19
1030-8
2013
Abstract anzeigen
Huntington's disease is caused by an expanded polyglutamine repeat in the huntingtin protein (HTT), but the pathophysiological sequence of events that trigger synaptic failure and neuronal loss are not fully understood. Alterations in N-methyl-D-aspartate (NMDA)-type glutamate receptors (NMDARs) have been implicated. Yet, it remains unclear how the HTT mutation affects NMDAR function, and direct evidence for a causative role is missing. Here we show that mutant HTT redirects an intracellular store of juvenile NMDARs containing GluN3A subunits to the surface of striatal neurons by sequestering and disrupting the subcellular localization of the endocytic adaptor PACSIN1, which is specific for GluN3A. Overexpressing GluN3A in wild-type mouse striatum mimicked the synapse loss observed in Huntington's disease mouse models, whereas genetic deletion of GluN3A prevented synapse degeneration, ameliorated motor and cognitive decline and reduced striatal atrophy and neuronal loss in the YAC128 Huntington's disease mouse model. Furthermore, GluN3A deletion corrected the abnormally enhanced NMDAR currents, which have been linked to cell death in Huntington's disease and other neurodegenerative conditions. Our findings reveal an early pathogenic role of GluN3A dysregulation in Huntington's disease and suggest that therapies targeting GluN3A or pathogenic HTT-PACSIN1 interactions might prevent or delay disease progression. | | | 23852340
|
Synaptic alterations in the rTg4510 mouse model of tauopathy. Kopeikina, KJ; Polydoro, M; Tai, HC; Yaeger, E; Carlson, GA; Pitstick, R; Hyman, BT; Spires-Jones, TL The Journal of comparative neurology
521
1334-53
2013
Abstract anzeigen
Synapse loss, rather than the hallmark amyloid-β (Aβ) plaques or tau-filled neurofibrillary tangles (NFT), is considered the most predictive pathological feature associated with cognitive status in the Alzheimer's disease (AD) brain. The role of Aβ in synapse loss is well established, but despite data linking tau to synaptic function, the role of tau in synapse loss remains largely undetermined. Here we test the hypothesis that human mutant P301L tau overexpression in a mouse model (rTg4510) will lead to age-dependent synaptic loss and dysfunction. Using array tomography and two methods of quantification (automated, threshold-based counting and a manual stereology-based technique) we demonstrate that overall synapse density is maintained in the neuropil, implicating synapse loss commensurate with the cortical atrophy known to occur in this model. Multiphoton in vivo imaging reveals close to 30% loss of apical dendritic spines of individual pyramidal neurons, suggesting these cells may be particularly vulnerable to tau-induced degeneration. Postmortem, we confirm the presence of tau in dendritic spines of rTg4510-YFP mouse brain by array tomography. These data implicate tau-induced loss of a subset of synapses that may be accompanied by compensatory increases in other synaptic subtypes, thereby preserving overall synapse density. Biochemical fractionation of synaptosomes from rTg4510 brain demonstrates a significant decrease in expression of several synaptic proteins, suggesting a functional deficit of remaining synapses in the rTg4510 brain. Together, these data show morphological and biochemical synaptic consequences in response to tau overexpression in the rTg4510 mouse model. | | Mouse | 23047530
|
Dab1 is required for synaptic plasticity and associative learning. Trotter, J; Lee, GH; Kazdoba, TM; Crowell, B; Domogauer, J; Mahoney, HM; Franco, SJ; Müller, U; Weeber, EJ; D'Arcangelo, G The Journal of neuroscience : the official journal of the Society for Neuroscience
33
15652-68
2013
Abstract anzeigen
Disabled-1 (Dab1) is an adaptor protein that is an obligate effector of the Reelin signaling pathway, and is critical for neuronal migration and dendrite outgrowth during development. Components of the Reelin pathway are highly expressed during development, but also continue to be expressed in the adult brain. Here we investigated in detail the expression pattern of Dab1 in the postnatal and adult forebrain, and determined that it is expressed in excitatory as well as inhibitory neurons. Dab1 was found to be localized in different cellular compartments, including the soma, dendrites, presynaptic and postsynaptic structures. Mice that are deficient in Dab1, Reelin, or the Reelin receptors ApoER2 and VLDLR exhibit severely perturbed brain cytoarchitecture, limiting the utility of these mice for investigating the role of this signaling pathway in the adult brain. In this study, we developed an adult forebrain-specific and excitatory neuron-specific conditional knock-out mouse line, and demonstrated that Dab1 is a critical regulator of synaptic function and hippocampal-dependent associative and spatial learning. These dramatic abnormalities were accompanied by a reduction in dendritic spine size, and defects in basal and plasticity-induced Akt and ERK1/2 signaling. Deletion of Dab1 led to no obvious changes in neuronal positioning, dendrite morphology, spine density, or synaptic composition. Collectively, these data conclusively demonstrate an important role for Reelin-Dab1 signaling in the adult forebrain, and underscore the importance of this pathway in learning and memory. | Immunofluorescence | | 24068831
|
Disrupted GABAAR trafficking and synaptic inhibition in a mouse model of Huntington's disease. Yuen, EY; Wei, J; Zhong, P; Yan, Z Neurobiology of disease
46
497-502
2011
Abstract anzeigen
Growing evidence suggests that Huntington's disease (HD), a neurodegenerative movement disorder caused by the mutant huntingtin (htt) with an expanded polyglutamine (polyQ) repeat, is associated with the altered intracellular trafficking and synaptic function. GABA(A) receptors, the key determinant of the strength of synaptic inhibition, have been found to bind to the huntingtin associated protein 1 (HAP1). HAP1 serves as an adaptor linking GABA(A) receptors to the kinesin family motor protein 5 (KIF5), controlling the transport of GABA(A) receptors along microtubules in dendrites. In this study, we found that GABA(A)R-mediated synaptic transmission is significantly impaired in a transgenic mouse model of HD expressing polyQ-htt, which is accompanied by the diminished surface expression of GABA(A) receptors. Moreover, the GABA(A)R/HAP1/KIF5 complex is disrupted and dissociated from microtubules in the HD mouse model. These results suggest that GABA(A)R trafficking and function is impaired in HD, presumably due to the interference of KIF5-mediated microtubule-based transport of GABA(A) receptors. The diminished inhibitory synaptic efficacy could contribute to the loss of the excitatory/inhibitory balance, leading to increased neuronal excitotoxicity in HD. | Western Blotting | | 22402331
|