Wenn Sie das Fenster schließen, wird Ihre Konfiguration nicht gespeichert, es sei denn, Sie haben Ihren Artikel in die Bestellung aufgenommen oder zu Ihren Favoriten hinzugefügt.
Klicken Sie auf OK, um das MILLIPLEX® MAP-Tool zu schließen oder auf Abbrechen, um zu Ihrer Auswahl zurückzukehren.
Wählen Sie konfigurierbare Panels & Premixed-Kits - ODER - Kits für die zelluläre Signaltransduktion & MAPmates™
Konfigurieren Sie Ihre MILLIPLEX® MAP-Kits und lassen sich den Preis anzeigen.
Konfigurierbare Panels & Premixed-Kits
Unser breites Angebot enthält Multiplex-Panels, für die Sie die Analyten auswählen können, die am besten für Ihre Anwendung geeignet sind. Unter einem separaten Register können Sie das Premixed-Cytokin-Format oder ein Singleplex-Kit wählen.
Kits für die zelluläre Signaltransduktion & MAPmates™
Wählen Sie gebrauchsfertige Kits zur Erforschung gesamter Signalwege oder Prozesse. Oder konfigurieren Sie Ihre eigenen Kits mit Singleplex MAPmates™.
Die folgenden MAPmates™ sollten nicht zusammen analysiert werden: -MAPmates™, die einen unterschiedlichen Assaypuffer erfordern. -Phosphospezifische und MAPmate™ Gesamtkombinationen wie Gesamt-GSK3β und Gesamt-GSK3β (Ser 9). -PanTyr und locusspezifische MAPmates™, z.B. Phospho-EGF-Rezeptor und Phospho-STAT1 (Tyr701). -Mehr als 1 Phospho-MAPmate™ für ein einziges Target (Akt, STAT3). -GAPDH und β-Tubulin können nicht mit Kits oder MAPmates™, die panTyr enthalten, analysiert werden.
.
Bestellnummer
Bestellinformationen
St./Pkg.
Liste
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Wählen Sie bitte Spezies, Panelart, Kit oder Probenart
Um Ihr MILLIPLEX® MAP-Kit zu konfigurieren, wählen Sie zunächst eine Spezies, eine Panelart und/oder ein Kit.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Spezies
Panelart
Gewähltes Kit
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
96-Well Plate
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
Weitere Reagenzien hinzufügen (MAPmates erfordern die Verwendung eines Puffer- und Detektionskits)
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Platzsparende Option Kunden, die mehrere Kits kaufen, können ihre Multiplex-Assaykomponenten in Kunststoffbeuteln anstelle von Packungen erhalten, um eine kompaktere Lagerung zu ermöglichen.
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Das Produkt wurde in Ihre Bestellung aufgenommen
Sie können nun ein weiteres Kit konfigurieren, ein Premixed-Kit wählen, zur Kasse gehen oder das Bestell-Tool schließen.
Detect Heparin using this Anti-Heparin Antibody, clone A7.10 validated for use in ELISA, RIA.
More>>Detect Heparin using this Anti-Heparin Antibody, clone A7.10 validated for use in ELISA, RIA. Less<<
Anti-Heparin Antibody, clone A7.10: SDB (Sicherheitsdatenblätter), Analysenzertifikate und Qualitätszertifikate, Dossiers, Broschüren und andere verfügbare Dokumente.
Detect Heparin using this Anti-Heparin Antibody, clone A7.10 validated for use in ELISA, RIA.
Key Applications
ELISA
Radioimmunoassay
Application Notes
EIA/RIA (kd by liquid phase RIA for heparin is approximately
1.0 x 10-11 M.) Suggested concentration 1-10 μg/mL.
Inhibits the formation of heparin accelerated thrombin-antithrombin complex formation in vitro.
Optimal working dilutions must be determined by end user.
Biological Information
Clone
A7.10
Concentration
Please refer to the Certificate of Analysis for the lot-specific concentration.
Host
Mouse
Specificity
Reacts with mouse heparin. Cross reacts with dextran sulfate by EIA. Also shows some cross reactivity to DNA and heparan sulfate.
Isotype
IgG2b
Species Reactivity
Mouse
Antibody Type
Monoclonal Antibody
Non-Reactive Species
Pig
Physicochemical Information
Dimensions
Materials Information
Toxicological Information
Safety Information according to GHS
Safety Information
Product Usage Statements
Usage Statement
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
Recently heparan sulfate was proposed as the host cell receptor for the dependovirus, adeno-associated virus type 2 (AAV2). We show that although heparan sulfate on the cell surface may contribute to the binding of AAV2 to permissive cells, the amount of heparan sulfate on the cell surface as determined by flow cytometry using four different monoclonal antibodies does not correlate with AAV2 binding to cells or recombinant AAV2 transduction efficiency. Experiments with either mutant CHO cells or cells treated with chlorate to remove sulfate groups showed that sulfation was not absolutely required for infection or binding: in the absence of cell surface sulfation, recombinant AAV2 was still able to be transduced in previously permissive cells. Heparin is commonly used as a substitute in studies of the interaction between heparan sulfate and ligand, and we demonstrate that the binding affinity of AAV2/heparin is low, with a K(d) value of approximately 2.0 nM. A study of the direct interaction between AAV2 and artificial glycosaminoglycans showed that a high degree of sulfation on heparin was critical for the ability to bind AAV2 and compete rAAV2 transduction and that both O- and N-sulfate groups are required. Overall, our data suggest that, as has been shown for other viruses, the presence of a high-affinity AAV2 receptor mediates AAV2 infection in addition to the low-affinity heparan sulfate binding.
A Toxoplasma lectin-like activity specific for sulfated polysaccharides is involved in host cell infection. E Ortega-Barria, J C Boothroyd The Journal of biological chemistry
274
1267-76
1998
Toxoplasma gondii is one of the most widespread parasites of humans and animals. The parasite has a remarkable ability to invade a broad range of cells within its mammalian hosts by mechanisms that are poorly understood at the molecular level. This broad host cell specificity suggests that adhesion should involve the recognition of ubiquitous surface-exposed host molecules or, alternatively, the presence of various parasite attachment molecules able to recognize different host cell receptors. We have discovered a sugar-binding activity (lectin) in tachyzoites of T. gondii that plays a role in vitro in erythrocyte agglutination and infection of human fibroblasts and epithelial cells. The ability to agglutinate erythrocytes can be reversed by a variety of soluble glycoconjugates, of which heparin, fucoidan, and dextran sulfate were the most effective. Interestingly, infectivity of tachyzoites for human foreskin fibroblasts, cells that are commonly used to grow T. gondii in vitro, was increased by low concentrations of the sulfated glycoconjugates that inhibited hemagglutination activity (i.e. dextran sulfate and fucoidan) whereas high concentrations inhibited parasite infection. Furthermore, inhibition of glycosaminoglycan biosynthesis and sulfation on the host cells reduced Toxoplasma infectivity. Finally, Toxoplasma tachyzoites showed a reduced ability to infect epithelial cell mutants deficient in the biosynthesis of surface proteoglycans. The probable identity of the hemagglutinin(s) was investigated by 1) direct binding of red blood cells to filter blots of Toxoplasma proteins separated by polyacrylamide gel electrophoresis, and 2) binding of metabolically labeled parasite proteins to fixed mammalian cells. Three parasite bands were thus identified as candidate adhesins. These results suggest that attachment of T. gondii to its target cell is mediated by parasite lectins and that sulfated sugars on the surface of host cells may function as a key parasite receptor.
Heparin and heparan sulfate are related glycosaminoglycans which demonstrate high-affinity interactions with a number of proteins, including antithrombin III. The immunogenicity of heparin has been reported previously employing heparin-protein conjugates as immunogens and as antigens in solid-phase assays. Previous studies also demonstrate that anti-heparin antibodies play a role in autoimmune diseases including systemic lupus and anti-phospholipid syndrome and in patients who receive heparin for therapeutic purposes. In the current study, we investigated the expression of monoclonal anti-heparin antibodies in nonimmunized, autoimmune MRL/lpr/lpr++ mice employing a liquid-phase radioimmunoassay. The Kd of monoclonal IgG2b autoantibodies for heparin was approximately 10(-8)M. Anti-heparin antibodies were precipitating, and were not polyreactive. The IgG monoclonal antibodies described in this study represent an immunological instance of a specific, high-affinity heparin-protein interaction.