Wenn Sie das Fenster schließen, wird Ihre Konfiguration nicht gespeichert, es sei denn, Sie haben Ihren Artikel in die Bestellung aufgenommen oder zu Ihren Favoriten hinzugefügt.
Klicken Sie auf OK, um das MILLIPLEX® MAP-Tool zu schließen oder auf Abbrechen, um zu Ihrer Auswahl zurückzukehren.
Wählen Sie konfigurierbare Panels & Premixed-Kits - ODER - Kits für die zelluläre Signaltransduktion & MAPmates™
Konfigurieren Sie Ihre MILLIPLEX® MAP-Kits und lassen sich den Preis anzeigen.
Konfigurierbare Panels & Premixed-Kits
Unser breites Angebot enthält Multiplex-Panels, für die Sie die Analyten auswählen können, die am besten für Ihre Anwendung geeignet sind. Unter einem separaten Register können Sie das Premixed-Cytokin-Format oder ein Singleplex-Kit wählen.
Kits für die zelluläre Signaltransduktion & MAPmates™
Wählen Sie gebrauchsfertige Kits zur Erforschung gesamter Signalwege oder Prozesse. Oder konfigurieren Sie Ihre eigenen Kits mit Singleplex MAPmates™.
Die folgenden MAPmates™ sollten nicht zusammen analysiert werden: -MAPmates™, die einen unterschiedlichen Assaypuffer erfordern. -Phosphospezifische und MAPmate™ Gesamtkombinationen wie Gesamt-GSK3β und Gesamt-GSK3β (Ser 9). -PanTyr und locusspezifische MAPmates™, z.B. Phospho-EGF-Rezeptor und Phospho-STAT1 (Tyr701). -Mehr als 1 Phospho-MAPmate™ für ein einziges Target (Akt, STAT3). -GAPDH und β-Tubulin können nicht mit Kits oder MAPmates™, die panTyr enthalten, analysiert werden.
.
Bestellnummer
Bestellinformationen
St./Pkg.
Liste
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Wählen Sie bitte Spezies, Panelart, Kit oder Probenart
Um Ihr MILLIPLEX® MAP-Kit zu konfigurieren, wählen Sie zunächst eine Spezies, eine Panelart und/oder ein Kit.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Spezies
Panelart
Gewähltes Kit
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
96-Well Plate
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
Weitere Reagenzien hinzufügen (MAPmates erfordern die Verwendung eines Puffer- und Detektionskits)
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Platzsparende Option Kunden, die mehrere Kits kaufen, können ihre Multiplex-Assaykomponenten in Kunststoffbeuteln anstelle von Packungen erhalten, um eine kompaktere Lagerung zu ermöglichen.
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Das Produkt wurde in Ihre Bestellung aufgenommen
Sie können nun ein weiteres Kit konfigurieren, ein Premixed-Kit wählen, zur Kasse gehen oder das Bestell-Tool schließen.
Detect Dopamine D3 Receptor using this Anti-Dopamine D3 Receptor Antibody, cytoplasmic domain validated for use in ELISA, IH & WB.
Key Applications
ELISA
Immunohistochemistry
Western Blotting
Application Notes
Western blot: 1-10 μg/mL (Chemiluminescence technique) Approximately 100-400 μg of membrane protein/lane should be loaded to visualize the receptor band.
Immunohistochemistry: 1-20 μg/mL on paraformaldehyde fixed sections.
ELISA: 0.5-1.0 μg/mL (1 μg/mL immunogen peptide (Cat. Number AG224)/well)
Optimal working dilutions must be determined by the end user.
Biological Information
Immunogen
A 19 amino acid peptide sequence from the human D3 receptor within the 3rd cytoplasmic domain.
Epitope
cytoplasmic domain
Host
Rabbit
Specificity
Specific for Dopamine Receptor D3. Human Dopamine D3 receptor is a 400 aa, G-protein coupled and transmembrane receptor protein (Giros et al. 1990, 1991; Schmauss et al. 1993; Liu et al. 1994; Fu et al. 1995; Sokoloff et al. 1990; Livingstone et al. 1992). The immunogen peptide shows no significant sequence similarity with other dopamine receptors (D1, D2, D4 or D5).
This gene encodes the D3 subtype of the dopamine receptor. The D3 subtype inhibits adenylyl cyclase through inhibitory G-proteins. This receptor is expressed in phylogenetically older regions of the brain, suggesting that this receptor plays a role in cognitive and emotional functions. It is a target for drugs which treat schizophrenia, drug addiction, and Parkinson disease. Alternative splicing of this gene results in multiple transcript variants that would encode different isoforms, although some variants may be subject to nonsense-mediated decay (NMD).
FUNCTION: SwissProt: P35462 # This is one of the five types (D1 to D5) of receptors for dopamine. The activity of this receptor is mediated by G proteins which inhibit adenylyl cyclase. SIZE: 400 amino acids; 44225 Da SUBUNIT: Interacts with CLIC6 (By similarity). SUBCELLULAR LOCATION: Cell membrane; Multi-pass membrane protein. TISSUE SPECIFICITY: Brain. DISEASE: SwissProt: P35462 # Genetic variation in DRD3 may be associated with susceptibility to hereditary essential tremor 1 (ETM1) [MIM:190300]. ETM1 is the most common movement disorder. The main feature is postural tremor of the arms. Head, legs, trunk, voice, jaw, and facial muscles also may be involved. The condition can be aggravated by emotions, hunger, fatigue and temperature extremes, and may cause a functional disability or even incapacitation. Inheritance is autosomal dominant. SIMILARITY: SwissProt: P35462 ## Belongs to the G-protein coupled receptor 1 family.
Physicochemical Information
Dimensions
Materials Information
Toxicological Information
Safety Information according to GHS
Safety Information
Product Usage Statements
Usage Statement
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
Storage and Shipping Information
Storage Conditions
Maintain at -20°C in undiluted aliquots for up to 12 months. Avoid repeated freeze/thaw cycles.
Selective loss of dopamine D3-type receptor mRNA expression in parietal and motor cortices of patients with chronic schizophrenia. Schmauss, C, et al. Proc. Natl. Acad. Sci. U.S.A., 90: 8942-6 (1993)
1992
The expression of dopamine D3-subtype-receptor mRNA was analyzed in defined anatomic regions of brain obtained postmortem from patients with chronic schizophrenia and from controls. The specific amplification of D3-encoding cDNA by PCR allowed the identification of D3 mRNA expression in a wide variety of anatomic regions in both control brains and brains obtained from schizophrenic patients. However, in the parietal cortex (Brodmann areas 1, 2, 3, and 5) and motor cortex (Brodmann area 4), a selective loss of D3 mRNA expression was found in schizophrenia. A different D3 mRNA species was identified that appears to be widely expressed and that is still found in those regions of schizophrenic brains where D3 mRNA could not be detected. Compared with D3 mRNA this RNA is significantly less abundant, and at present its function (if any) is unclear. Many variables associated with either the course and/or the therapeutic management of the disease may account for the selective loss of D3 mRNA in the motor, somatosensory, and somatosensory association areas of schizophrenic brains.
Three-dimensional computer models of the rat D2, D3 and D4 dopamine receptor subtypes have been constructed based on the diffraction co-ordinates for bacteriorhodopsin, another membrane-bound protein containing seven transmembrane domains presumed to be arranged in a similar spatial orientation. Models were assembled by aligning the putative transmembrane domains of the dopamine receptors with those of bacteriorhodopsin using sequence similarities, and then superimposing these modelled alpha-helices on to the bacteriorhodopsin-derived co-ordinates. These models explore the potential hydrogen bonding, electrostatic and stacking interactions within the receptor which may be important for maintaining the conformation of these receptors, and thereby provide target sites for agonist binding. Proposed interactions between the catecholamine ligands and these receptors appear to account for the affinity, although not the specificity, of these agonist ligands for the different dopamine receptor subtypes. Such models will be useful for establishing structure-function relationships between ligands and the dopamine receptors, and may ultimately provide a template for the design of receptor-specific drugs.
Shorter variants of the D3 dopamine receptor produced through various patterns of alternative splicing. Giros, B, et al. Biochem. Biophys. Res. Commun., 176: 1584-92 (1991)
1991
Using Polymerase Chain Reaction amplification of mRNAs from several areas of rat brain we have shown the occurrence of two shorter transcripts of the dopamine D3 receptor gene, in addition to that corresponding to the D3 receptor. Cloning and sequencing of these transcripts, together with the establishment of the exon-intron organization of the D3 receptor gene, shown these transcripts to result from different processes of alternative splicing. The first transcript encodes a 100 amino acid protein, being produced by splicing of an exon whose absence deletes the third transmembrane domain and gives rise downstream to a frameshift in the open reading frame. In the second transcript, an in frame 54 bp deletion is produced by splicing occurring at an internal acceptor site, suppressing half of the second extracellular loop and a small sequence in the fifth transmembrane domain. This transcript was stably expressed in CHO cells which, however, failed to reveal any dopaminergic ligand binding activity. The functional significance and possible role of these shorter variants of the dopamine D3 receptor in cell signalling remain to be established.