Simultaneous Isolation of Three Different Stem Cell Populations from Murine Skin. Forni, MF; Ramos Maia Lobba, A; Pereira Ferreira, AH; Sogayar, MC PloS one
10
e0140143
2015
Abstract anzeigen
The skin is a rich source of readily accessible stem cells. The level of plasticity afforded by these cells is becoming increasingly important as the potential of stem cells in Cell Therapy and Regenerative Medicine continues to be explored. Several protocols described single type stem cell isolation from skin; however, none of them afforded simultaneous isolation of more than one population. Herein, we describe the simultaneous isolation and characterization of three stem cell populations from the dermis and epidermis of murine skin, namely Epidermal Stem Cells (EpiSCs), Skin-derived Precursors (SKPs) and Mesenchymal Stem Cells (MSCs). The simultaneous isolation was possible through a simple protocol based on culture selection techniques. These cell populations are shown to be capable of generating chondrocytes, adipocytes, osteocytes, terminally differentiated keratinocytes, neurons and glia, rendering this protocol suitable for the isolation of cells for tissue replenishment and cell based therapies. The advantages of this procedure are far-reaching since the skin is not only the largest organ in the body, but also provides an easily accessible source of stem cells for autologous graft. | | | 26462205
|
Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. Bellesi, M; de Vivo, L; Tononi, G; Cirelli, C BMC biology
13
66
2015
Abstract anzeigen
Astrocytes can mediate neurovascular coupling, modulate neuronal excitability, and promote synaptic maturation and remodeling. All these functions are likely to be modulated by the sleep/wake cycle, because brain metabolism, neuronal activity and synaptic turnover change as a function of behavioral state. Yet, little is known about the effects of sleep and wake on astrocytes.Here we show that sleep and wake strongly affect both astrocytic gene expression and ultrastructure in the mouse brain. Using translating ribosome affinity purification technology and microarrays, we find that 1.4 % of all astrocytic transcripts in the forebrain are dependent on state (three groups, sleep, wake, short sleep deprivation; six mice per group). Sleep upregulates a few select genes, like Cirp and Uba1, whereas wake upregulates many genes related to metabolism, the extracellular matrix and cytoskeleton, including Trio, Synj2 and Gem, which are involved in the elongation of peripheral astrocytic processes. Using serial block face scanning electron microscopy (three groups, sleep, short sleep deprivation, chronic sleep restriction; three mice per group, greater than 100 spines per mouse, 3D), we find that a few hours of wake are sufficient to bring astrocytic processes closer to the synaptic cleft, while chronic sleep restriction also extends the overall astrocytic coverage of the synapse, including at the axon-spine interface, and increases the available astrocytic surface in the neuropil.Wake-related changes likely reflect an increased need for glutamate clearance, and are consistent with an overall increase in synaptic strength when sleep is prevented. The reduced astrocytic coverage during sleep, instead, may favor glutamate spillover, thus promoting neuronal synchronization during non-rapid eye movement sleep. | | | 26303010
|
Interference with protease-activated receptor 1 does not reduce damage to subventricular zone cells of immature rodent brain following exposure to blood or blood plasma. Mao, X; Del Bigio, MR Journal of negative results in biomedicine
14
3
2015
Abstract anzeigen
Prior work showed that whole blood, plasma, and serum injections are damaging to the neonatal rodent brain in a model of intracerebral/periventricular hemorrhage. Thrombin alone is also damaging. In adult animal models of hemorrhagic stroke, the protease-activated (thrombin) receptor PAR1 mediates some of the brain damage. We hypothesized that PAR1 interference will reduce the adverse effects of blood products on immature rodent brain and cells.Cultured oligodendrocyte precursor cells from rats and mice were exposed to blood plasma with and without the PAR1 antagonists SCH-79797 or BMS-200261. In concentrations previously shown to have activity on brain cells, neither drug showed evidence of protection against the toxicity of blood plasma. Newborn mice (wild type, heterozygous, and PAR1 knockout) were subjected to intracerebral injection of autologous whole blood into the periventricular region of the frontal lobe. Cell proliferation, measured by Ki67 immunoreactivity in the subventricular zone, was suppressed at 1 and 2 days, and was not normalized in the knockout mice. Cell apoptosis, measured by activated caspase 3 immunoreactivity, was not apparent in the subventricular zone. Increased apoptosis in periventricular striatal cells was not normalized in the knockout mice.Interference with the thrombin-PAR1 system does not reduce the adverse effects of blood on germinal cells of the immature rodent brain. PAR1 interference is unlikely to be a useful treatment for reducing the brain damage that accompanies periventricular (germinal matrix) hemorrhage, a common complication of premature birth. | | | 25649264
|
Expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and its roles in activated microglia in vivo and in vitro. Yang, L; Kan, EM; Lu, J; Wu, C; Ling, EA Journal of neuroinflammation
11
148
2014
Abstract anzeigen
We reported previously that amoeboid microglial cells in the postnatal rat brain expressed 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) both in vivo and in vitro; however, the functional role of CNPase in microglia has remained uncertain. This study extended the investigation to determine CNPase expression in activated microglia derived from cell culture and animal models of brain injury with the objective to clarify its putative functions.Three-day-old Wistar rats were given an intraperitoneal injection of lipopolysaccharide to induce microglial activation, and the rats were killed at different time points. Along with this, primary cultured microglial cells were subjected to lipopolysaccharide treatment, and expression of CNPase was analyzed by real-time reverse transcription PCR and immunofluorescence. Additionally, siRNA transfection was employed to downregulate CNPase in BV-2 cells. Following this, inducible nitric oxide synthase, IL-1β and TNF-α were determined at mRNA and protein levels. Reactive oxygen species and nitric oxide were also assessed by flow cytometry and colorimetric assay, respectively. In parallel to this, CNPase expression in activated microglia was also investigated in adult rats subjected to fluid percussion injury as well as middle cerebral artery occlusion.In vivo, CNPase immunofluorescence in activated microglia was markedly enhanced after lipopolysaccharide treatment. A similar feature was observed in the rat brain after fluid percussion injury and middle cerebral artery occlusion. In vitro, CNPase protein and mRNA expression was increased in primary microglia with lipopolysaccharide stimulation. Remarkably, inducible nitric oxide synthase, IL-1β, TNF-α, reactive oxygen species and nitric oxide were significantly upregulated in activated BV-2 cells with CNPase knockdown. siRNA knockdown of CNPase increased microglia migration; on the other hand, microglial cells appeared to be arrested at G1 phase.The present results have provided the first morphological and molecular evidence that CNPase expression is increased in activated microglia. CNPase knockdown resulted in increased expression of various inflammatory mediators. It is concluded that CNPase may play an important role as a putative anti-inflammatory gene both in normal and injured brain. | Immunocytochemistry | | 25148928
|
Designing and troubleshooting immunopanning protocols for purifying neural cells. Barres, BA Cold Spring Harbor protocols
2014
1342-7
2014
Abstract anzeigen
Purifying and culturing cells from the central nervous system (CNS) has proved to be an incredibly powerful tool for dissecting fundamental neuron and glial properties, and especially powerful in understanding neuronal-glial interactions. In a series of detailed protocols, we have provided step-by-step instructions for purifying and culturing specific types of neurons, glia, and vascular cells from the CNS by immunopanning. This article discusses common pitfalls and errors as well as important design considerations for the immunopanning procedure. | | | 25447277
|
Early structural and functional defects in synapses and myelinated axons in stratum lacunosum moleculare in two preclinical models for tauopathy. Maurin, H; Chong, SA; Kraev, I; Davies, H; Kremer, A; Seymour, CM; Lechat, B; Jaworski, T; Borghgraef, P; Devijver, H; Callewaert, G; Stewart, MG; Van Leuven, F PloS one
9
e87605
2014
Abstract anzeigen
The stratum lacunosum moleculare (SLM) is the connection hub between entorhinal cortex and hippocampus, two brain regions that are most vulnerable in Alzheimer's disease. We recently identified a specific synaptic deficit of Nectin-3 in transgenic models for tauopathy. Here we defined cognitive impairment and electrophysiological problems in the SLM of Tau.P301L mice, which corroborated the structural defects in synapses and dendritic spines. Reduced diffusion of DiI from the ERC to the hippocampus indicated defective myelinated axonal pathways. Ultrastructurally, myelinated axons in the temporoammonic pathway (TA) that connects ERC to CA1 were damaged in Tau.P301L mice at young age. Unexpectedly, the myelin defects were even more severe in bigenic biGT mice that co-express GSK3β with Tau.P301L in neurons. Combined, our data demonstrate that neuronal expression of protein Tau profoundly affected the functional and structural organization of the entorhinal-hippocampal complex, in particular synapses and myelinated axons in the SLM. White matter pathology deserves further attention in patients suffering from tauopathy and Alzheimer's disease. | | | 24498342
|
Striatal oligodendrogliogenesis and neuroblast recruitment are increased in the R6/2 mouse model of Huntington's disease. McCollum, MH; Leon, RT; Rush, DB; Guthrie, KM; Wei, J Brain research
1518
91-103
2013
Abstract anzeigen
The subventricular zone (SVZ) is one of the two major neurogenic regions in the adult mammalian brain. Its close proximity to the striatum suggests that a cell-based therapeutic strategy for the treatment of Huntington's disease (HD) is possible. To achieve this, it is important to understand how adult cell production, migration and differentiation may be altered in the HD brain. In this study, we quantified the number of adult-born striatal cells and characterized their fate in the R6/2 transgenic mouse model of HD. We found that the number of new striatal cells was approximately two-fold greater in R6/2 vs. wild type mice, while SVZ cell proliferation was not affected. Using cell-type specific markers, we demonstrated that the majority of new striatal cells were mature oligodendrocytes or oligodendroglial precursors that were intrinsic to the striatum. We also detected a significant increase in the number of migrating neuroblasts that appeared to be recruited from the SVZ to the striatum. However, these neuroblasts did not mature into neurons and most were lost between 1 and 2 weeks of cell age. Crossing the R6/2 mice with mice the over-expressing brain-derived neurotrophic factor in the striatum increased the numbers of neuroblasts that survived to 2 weeks, but did not promote their differentiation. Together, our data indicate that the potential treatment of HD based on manipulating endogenous progenitor cells should take into consideration the apparent enhancement in striatal oligodendrogliogenesis and the limited ability of recruited SVZ neuroblasts to survive long-term and differentiate in the diseased striatum. | | | 23623813
|
Prion replication elicits cytopathic changes in differentiated neurosphere cultures. Iwamaru, Y; Takenouchi, T; Imamura, M; Shimizu, Y; Miyazawa, K; Mohri, S; Yokoyama, T; Kitani, H Journal of virology
87
8745-55
2013
Abstract anzeigen
The molecular mechanisms of prion-induced cytotoxicity remain largely obscure. Currently, only a few cell culture models have exhibited the cytopathic changes associated with prion infection. In this study, we introduced a cell culture model based on differentiated neurosphere cultures isolated from the brains of neonatal prion protein (PrP)-null mice and transgenic mice expressing murine PrP (dNP0 and dNP20 cultures). Upon exposure to mouse Chandler prions, dNP20 cultures supported the de novo formation of abnormal PrP and the resulting infectivity, as assessed by bioassays. Furthermore, this culture was susceptible to various prion strains, including mouse-adapted scrapie, bovine spongiform encephalopathy, and Gerstmann-Sträussler-Scheinker syndrome prions. Importantly, a subset of the cells in the infected culture that was mainly composed of astrocyte lineage cells consistently displayed late-occurring, progressive signs of cytotoxicity as evidenced by morphological alterations, decreased cell viability, and increased lactate dehydrogenase release. These signs of cytotoxicity were not observed in infected dNP0 cultures, suggesting the requirement of endogenous PrP expression for prion-induced cytotoxicity. Degenerated cells positive for glial fibrillary acidic protein accumulated abnormal PrP and exhibited features of apoptotic death as assessed by active caspase-3 and terminal deoxynucleotidyltransferase nick-end staining. Furthermore, caspase inhibition provided partial protection from prion-mediated cell death. These results suggest that differentiated neurosphere cultures can provide an in vitro bioassay for mouse prions and permit the study of the molecular basis for prion-induced cytotoxicity at the cellular level. | | | 23740992
|
Expansion of oligodendrocyte progenitor cells following SIRT1 inactivation in the adult brain. Rafalski, VA; Ho, PP; Brett, JO; Ucar, D; Dugas, JC; Pollina, EA; Chow, LM; Ibrahim, A; Baker, SJ; Barres, BA; Steinman, L; Brunet, A Nature cell biology
15
614-24
2013
Abstract anzeigen
Oligodendrocytes-the myelin-forming cells of the central nervous system-can be regenerated during adulthood. In adults, new oligodendrocytes originate from oligodendrocyte progenitor cells (OPCs), but also from neural stem cells (NSCs). Although several factors supporting oligodendrocyte production have been characterized, the mechanisms underlying the generation of adult oligodendrocytes are largely unknown. Here we show that genetic inactivation of SIRT1, a protein deacetylase implicated in energy metabolism, increases the production of new OPCs in the adult mouse brain, in part by acting in NSCs. New OPCs produced following SIRT1 inactivation differentiate normally, generating fully myelinating oligodendrocytes. Remarkably, SIRT1 inactivation ameliorates remyelination and delays paralysis in mouse models of demyelinating injuries. SIRT1 inactivation leads to the upregulation of genes involved in cell metabolism and growth factor signalling, in particular PDGF receptor α (PDGFRα). Oligodendrocyte expansion following SIRT1 inactivation is mediated at least in part by AKT and p38 MAPK-signalling molecules downstream of PDGFRα. The identification of drug-targetable enzymes that regulate oligodendrocyte regeneration in adults could facilitate the development of therapies for demyelinating injuries and diseases, such as multiple sclerosis. | Immunocytochemistry | | 23644469
|
Effects of sleep and wake on oligodendrocytes and their precursors. Bellesi, M; Pfister-Genskow, M; Maret, S; Keles, S; Tononi, G; Cirelli, C The Journal of neuroscience : the official journal of the Society for Neuroscience
33
14288-300
2013
Abstract anzeigen
Previous studies of differential gene expression in sleep and wake pooled transcripts from all brain cells and showed that several genes expressed at higher levels during sleep are involved in the synthesis/maintenance of membranes in general and of myelin in particular, a surprising finding given the reported slow turnover of many myelin components. Other studies showed that oligodendrocyte precursor cells (OPCs) are responsible for the formation of new myelin in both the injured and the normal adult brain, and that glutamate released from neurons, via neuron-OPC synapses, can inhibit OPC proliferation and affect their differentiation into myelin-forming oligodendrocytes. Because glutamatergic transmission is higher in wake than in sleep, we asked whether sleep and wake can affect oligodendrocytes and OPCs. Using the translating ribosome affinity purification technology combined with microarray analysis in mice, we obtained a genome-wide profiling of oligodendrocytes after sleep, spontaneous wake, and forced wake (acute sleep deprivation). We found that hundreds of transcripts being translated in oligodendrocytes are differentially expressed in sleep and wake: genes involved in phospholipid synthesis and myelination or promoting OPC proliferation are transcribed preferentially during sleep, while genes implicated in apoptosis, cellular stress response, and OPC differentiation are enriched in wake. We then confirmed through BrdU and other experiments that OPC proliferation doubles during sleep and positively correlates with time spent in REM sleep, whereas OPC differentiation is higher during wake. Thus, OPC proliferation and differentiation are not perfectly matched at any given circadian time but preferentially occur during sleep and wake, respectively. | | | 24005282
|