Millipore Sigma Vibrant Logo
 

m16


144 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (55)
  • (54)
  • (25)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Nardilysin promotes hepatocellular carcinoma through activation of signal transducer and activator of transcription 3. 28207963

    Nardilysin (NRDC) is a metalloendopeptidase of the M16 family. We previously showed that NRDC activates inflammatory cytokine signaling, including interleukin-6-signal transducer and activator of transcription 3 (STAT3) signaling. NRDC has been implicated in the promotion of breast, gastric and esophageal cancer, as well as the development of liver fibrosis. In this study, we investigated the role of NRDC in the promotion of hepatocellular carcinoma (HCC), both clinically and experimentally. We found that NRDC expression was upregulated threefold in HCC tissue compared to the adjacent non-tumor liver tissue, which was confirmed by immunohistochemistry and western blotting. We also found that high serum NRDC was associated with large tumor size (>3 cm, P = 0.016) and poor prognosis after hepatectomy (median survival time 32.0 vs 73.9 months, P = 0.003) in patients with hepatitis C (n = 120). Diethylnitrosamine-induced hepatocarcinogenesis was suppressed in heterozygous NRDC-deficient mice compared to their wild-type littermates. Gene silencing of NRDC with miRNA diminished the growth of Huh-7 and Hep3B spheroids in vitro. Notably, phosphorylation of STAT3 was decreased in NRDC-depleted Huh-7 spheroids compared to control spheroids. The effect of a STAT3 inhibitor (S3I-201) on the growth of Huh-7 spheroids was reduced in NRDC-depleted cells relative to controls. Our results show that NRDC is a promising prognostic marker for HCC in patients with hepatitis C, and that NRDC promotes tumor growth through activation of STAT3.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Nardilysin and ADAM proteases promote gastric cancer cell growth by activating intrinsic cytokine signalling via enhanced ectodomain shedding of TNF-α. 22351606

    Nardilysin (NRDc), a metalloendopeptidase of the M16 family, promotes ectodomain shedding of the precursor forms of various growth factors and cytokines by enhancing the protease activities of ADAM proteins. Here, we show the growth-promoting role of NRDc in gastric cancer cells. Analyses of clinical samples demonstrated that NRDc protein expression was frequently elevated both in the serum and cancer epithelium of gastric cancer patients. After NRDc knockdown, tumour cell growth was suppressed both in vitro and in xenograft experiments. In gastric cancer cells, NRDc promotes shedding of pro-tumour necrosis factor-alpha (pro-TNF-α), which stimulates expression of NF-κB-regulated multiple cytokines such as interleukin (IL)-6. In turn, IL-6 activates STAT3, leading to transcriptional upregulation of downstream growth-related genes. Gene silencing of ADAM17 or ADAM10, representative ADAM proteases, phenocopied the changes in cytokine expression and cell growth induced by NRDc knockdown. Our results demonstrate that gastric cancer cell growth is maintained by autonomous TNF-α-NF-κB and IL-6-STAT3 signalling, and that NRDc and ADAM proteases turn on these signalling cascades by stimulating ectodomain shedding of TNF-α.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • DNA synthesis and epigenetic modification during mouse oocyte fertilization by human or hamster sperm injection. 21107900

    To evaluate DNA synthesis and epigenetic modification in mouse oocytes during the first cell cycle following the injection of human or hamster sperm.Mouse oocytes following the injection of human and hamster sperm and cultured in M16 medium.Male and female pronucleus formation, DNA synthesis, histone protein modification, and heterochromatin formation were similar in mouse oocytes injected with human or hamster sperm. However, DNA methylation patterns were altered in mouse oocytes following human sperm injection. Immunocytochemical staining with a histone H3-MeK9 antibody revealed that human and hamster sperm chromatin associated normally with female mouse chromatin, then entered into the metaphase and formed normal, two-cell stage embryos.Although differences in epigenetic modification of DNA were observed, fertilization and cleavage occurred in a species non-specific manner in mouse oocytes.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB3448
    Nombre del producto:
    Anti-Heterochromatin Protein-1 β Antibody, clone 1MOD-1A9
  • Nardilysin enhances ectodomain shedding of heparin-binding epidermal growth factor-like growth factor through activation of tumor necrosis factor-alpha-converting enzyme. 16923819

    Like other members of the epidermal growth factor family, heparin-binding epidermal growth factor-like growth factor (HB-EGF) is synthesized as a transmembrane protein that can be shed enzymatically to release a soluble growth factor. Ectodomain shedding is essential to the biological functions of HB-EGF and is strictly regulated. However, the mechanism that induces the shedding remains unclear. We have recently identified nardilysin (N-arginine dibasic convertase (NRDc)), a metalloendopeptidase of the M16 family, as a protein that specifically binds HB-EGF (Nishi, E., Prat, A., Hospital, V., Elenius, K., and Klagsbrun, M. (2001) EMBO J. 20, 3342-3350). Here, we show that NRDc enhances ectodomain shedding of HB-EGF. When expressed in cells, NRDc enhanced the shedding in cooperation with tumor necrosis factor-alpha-converting enzyme (TACE; ADAM17). NRDc formed a complex with TACE, a process promoted by phorbol esters, general activators of ectodomain shedding. NRDc enhanced TACE-induced HB-EGF cleavage in a peptide cleavage assay, indicating that the interaction with NRDc potentiates the catalytic activity of TACE. The metalloendopeptidase activity of NRDc was not required for the enhancement of HB-EGF shedding. Notably, a reduction in the expression of NRDc caused by RNA interference was accompanied by a decrease in ectodomain shedding of HB-EGF. These results indicate the essential role of NRDc in HB-EGF ectodomain shedding and reveal how the shedding is regulated by the modulation of sheddase activity.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Developmental and genetic regulation of human surfactant protein B in vivo. 18776725

    Genetic and developmental disruption of surfactant protein B (SP-B) expression causes neonatal respiratory distress syndrome (RDS).To assess developmental and genetic regulation of SP-B expression in vivo.To evaluate in vivo developmental regulation of SP-B, we used immunoblotting to compare frequency of detection of mature and pro-SP-B peptides in developmentally distinct cohorts: 24 amniotic fluid samples, unfractionated tracheal aspirates from 101 infants greater than or=34 weeks' gestation with (75) and without (26) neonatal RDS, and 6 nonsmoking adults. To examine genetic regulation, we used univariate and logistic regression analyses to detect associations between common SP-B (SFTPB) genotypes and SP-B peptides in the neonatal RDS cohort.We found pro-SP-B peptides in 24/24 amniotic fluid samples and in 100/101 tracheal aspirates from newborn infants but none in bronchoalveolar lavage from normal adults (0/6) (p less than 0.001). We detected an association (p = 0.0011) between pro-SP-B peptides (M(r) 40 and 42 kDa) and genotype of a nonsynonymous single nucleotide polymorphism at genomic position 1580 that regulates amino-terminus glycosylation.Pro-SP-B peptides are more common in developmentally less mature humans. Association of genotype at genomic position 1580 with pro-SP-B peptides (M(r) 40 and 42 kDa) suggests genetic regulation of amino terminus glycosylation in vivo.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB3430
    Nombre del producto:
    Anti-Prosurfactant Protein B Antibody, reacts with both CT and NT
  • Phosphorylated 4E-binding protein 1 (p-4E-BP1): a novel prognostic marker in human astrocytomas. 22690797

    Korkolopoulou P, Levidou G, El-Habr E A, Piperi C, Adamopoulos C, Samaras V, Boviatsis E, Thymara I, Trigka E-A, Sakellariou S, Kavantzas N, Patsouris E & Saetta A A (2012) Histopathology 61, 293-305 Phosphorylated 4E-binding protein 1 (p-4E-BP1): a novel prognostic marker in human astrocytomas Aims:  To investigate the significance of the mammalian target of rapamycin (mTOR) pathway in astrocytic tumours, published information in this context being limited, especially regarding phosphorylated 4E-binding protein (p-4E-BP) 1. Methods and results:  Paraffin-embedded tissue from 111 patients with astroglial tumours (grades II-IV) was investigated for the association of phosphorylated mTOR (p-mTOR) signalling components with phosphorylated extracellular signal-related kinase 1/2 (p-ERK1/2) and phosphorylated AKT (p-AKT) expression, clinicopathological features, angiogenesis, isocitrate dehydrogenase 1 (IDH1)-R132H, and survival. Expression was also quantified by western blot analysis in 12 cases and in three primary glioma cell cultures following rapamycin treatment. p-mTOR expression correlated with p-4E-BP1 expression and marginally with p-p70S6K expression. p-4E-BP1 expression increased with tumour grade. Rapamycin induced a decline in phosphorylation levels of all three proteins. Nuclear p-AKT and cytoplasmic p-ERK1/2 immunoexpression correlated with p-4E-BP1 expression, whereas cytoplasmic p-AKT expression correlated with p-p70S6K expression. All three proteins were associated with increased angiogenesis but not with IDH1-R132H expression status. p-mTOR adversely affected overall and disease-free survival in univariate analysis. In multivariate survival analysis, the presence of p-4E-BP1 predicted shortened overall survival in the entire cohort and glioblastomas. Conclusions:  mTOR signalling components are differentially involved in the acquisition of a more aggressive and angiogenic phenotype in astrocytic tumours. Moreover, p-4E-BP1 emerges as a novel prognostic marker, which might aid in the selection of patients who are more likely to benefit from therapy with mTOR inhibitors.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AP132P
    Nombre del producto:
    Goat Anti-Rabbit IgG Antibody, Peroxidase Conjugated
  • Positron emission tomography imaging of fibrillar parenchymal and vascular amyloid-β in TgCRND8 mice. 23509918

    Few quantitative diagnostic and monitoring, tools are available to clinicians treating patients with Alzheimer's disease. Further, many of the promising quantitative imaging tools under development lack clear specificity toward different types of Amyloid-β (Aβ) pathology such as vascular or oligomeric species. Antibodies offer an opportunity to image specific types of Aβ pathology because of their excellent specificity. In this study, we developed a method to translate a panel of anti-Aβ antibodies, which show excellent histological performance, into live animal imaging contrast agents. In the TgCRND8 mouse model of Alzheimer's disease, we tested two antibodies, M64 and M116, that target parenchyma aggregated Aβ plaques and one antibody, M31, that targets vascular Aβ. All three antibodies were administered intravenously after labeling with both poly(ethylene glycol) to enhance circulation and (64)Cu to allow detection via positron emission tomography (PET) imaging. We were clearly able to differentiate TgCRND8 mice from wild type controls by PET imaging using either M116, the anti-Aβ antibody targeting parenchymal Aβ or M31, the antivascular Aβ antibody. To confirm the validity of the noninvasive imaging of specific Aβ pathology, brains were examined after imaging and showed clear evidence of binding to Aβ plaques.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. 20837706

    MOF (MYST1) is the major enzyme to catalyze acetylation of histone H4 lysine 16 (K16) and is highly conserved through evolution. Using a conditional knockout mouse model and the derived mouse embryonic fibroblast cell lines, we showed that loss of Mof led to a global reduction of H4 K16 acetylation, severe G(2)/M cell cycle arrest, massive chromosome aberration, and defects in ionizing radiation-induced DNA damage repair. We further showed that although early DNA damage sensing and signaling by ATM were normal in Mof-null cells, the recruitment of repair mediator protein Mdc1 and its downstream signaling proteins 53bp1 and Brca1 to DNA damage foci was completely abolished. Mechanistic studies suggested that Mof-mediated H4 K16 acetylation and an intact acidic pocket on H2A.X were essential for the recruitment of Mdc1. Removal of Mof and its associated proteins phenocopied a charge-neutralizing mutant of H2A.X. Given the well-characterized H4-H2A trans interactions in regulating higher-order chromatin structure, our study revealed a novel chromatin-based mechanism that regulates the DNA damage repair process.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo